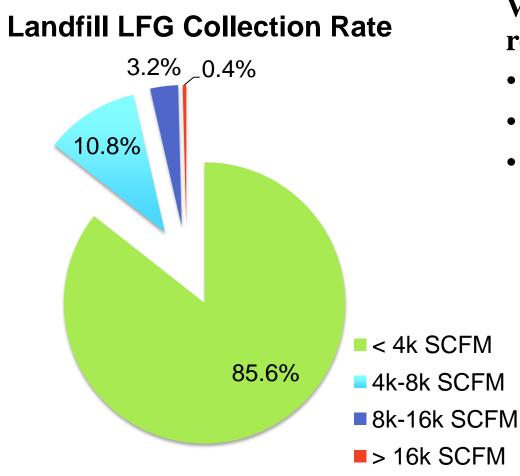


Problem/Opportunity



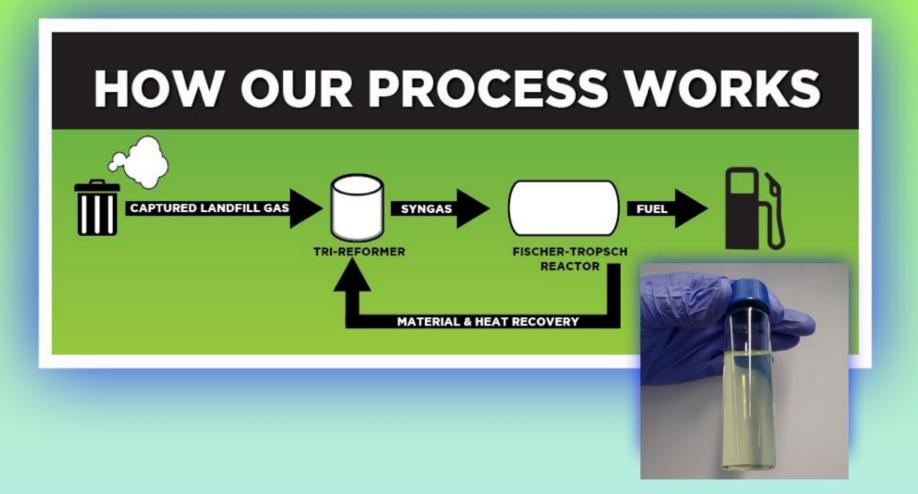
234 MM tons/year of Garbage

- 2,450 Landfills in US
- 20% of Human Source of Methane
- Requirement to Capture and Mitigate
- RFS Increase in RVO
- Waste Industry Consumes ~ 4% US Diesel consumption
- Ag Industry Consumes ~3% US Diesel Consumption
- AD Technology Advancements (~1,500 projects operating in US)

Total US Biogas Generation Rate ~ 800,000 SCFM

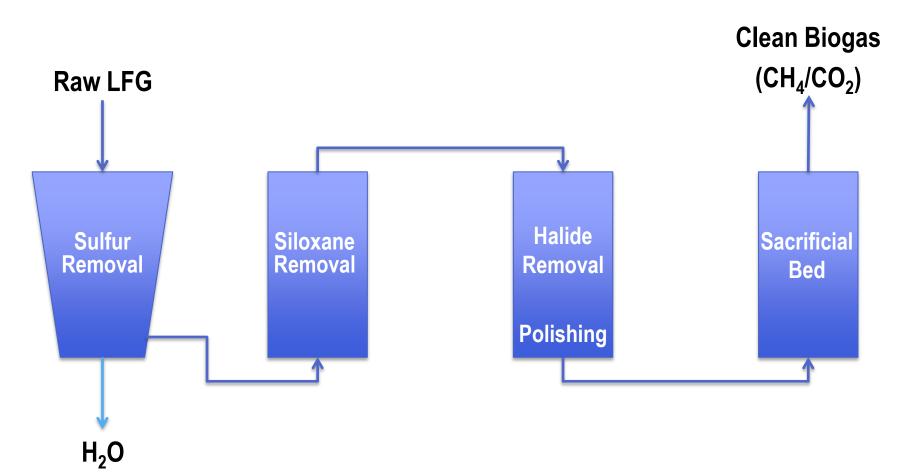
What's the best use of this energy resource?

- Electricity generation
- Biomethane
- Gas to Liquids

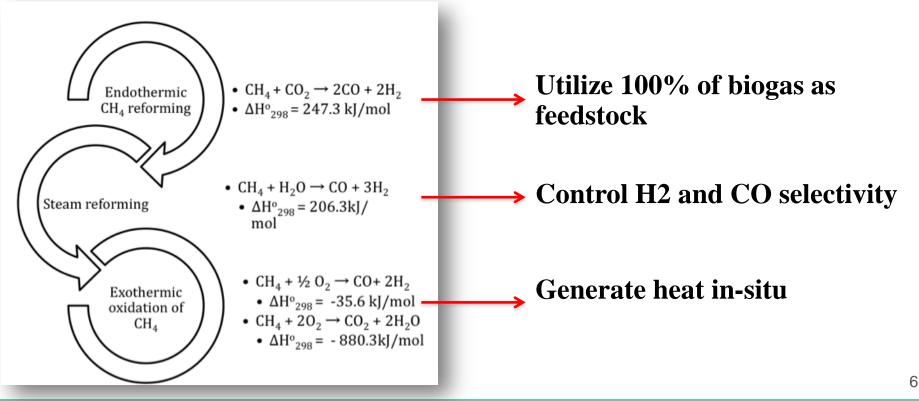


Policy

Focus and Technology



Demonstrate small scale GTL in economical and profitable manner



Trace Contaminant Pretreatment

Tri-reforming:

- Minimize cleanup and pretreatment process (No CO₂ removal)
- Less energy consumption
- Produce high quality syngas ($H_2:CO \sim 2$)

Tri-reforming of LFG

Catalyst Bed temp. (°C)	GHSV (h⁻¹)	CH₄ conv. (%)	CO ₂ conv. (%)	H ₂ :CO
770-810	30,000	92-99	52-72	1.70-2.23

Catalyst Optimization

- Thermally Stable
- High Surface Area
- Coke Resistant
- High OSC
- **Excellent Redox Properties**
- High Dispersion
- **Excellent Selectivity**
- High Activity
- Economical

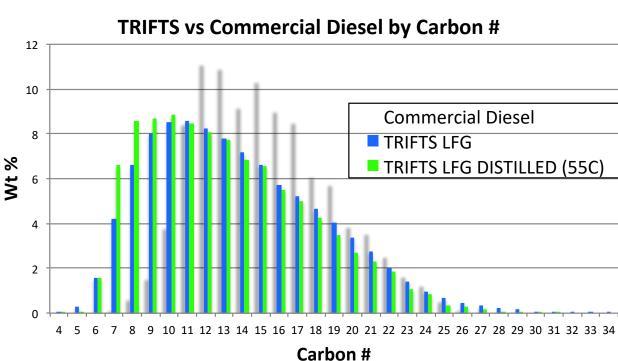
Low Pressure Drop


FTS Eggshell Catalyst

- Overcome mass and heat transfer limitations
- Selective product distribution in middle distillate region
- Avoid wax production

CO % Conv	LFG Energy Recovery	Selectivity (%)		
	In Liq Fuel (%)	C ₁₋₄	CO ₂	C ₅₊
71	40	43.7	1.4	55.0

Benchscale TRIFTS Unit


- Optimize process conditions
- Facilitate Pilot/Demonstration Design
- Plug bench data into ASPEN
- Update full scale technoeconomic analysis

Fuel Analysis

- Low aromatics improve net heat of combustion and reduce soot
- Isomers improve cold temp properties
- Further reduce olefin content w/ addition of catalyst promoters
- Excellent middle distillate boiling point distribution
- Control phase separation temp to fractionate light ends
- Final boiling point aligns with commercial diesel

Family	(H2:CO=1.7)	Diesel
Paraffins	67.164	19.95
Isomers	28.243	31.6
Olefins	4.323	0.92
Aromatics	0.02	39.48
Cyclics	0.25	8.05

Т2С-Е

Hydrocarbon

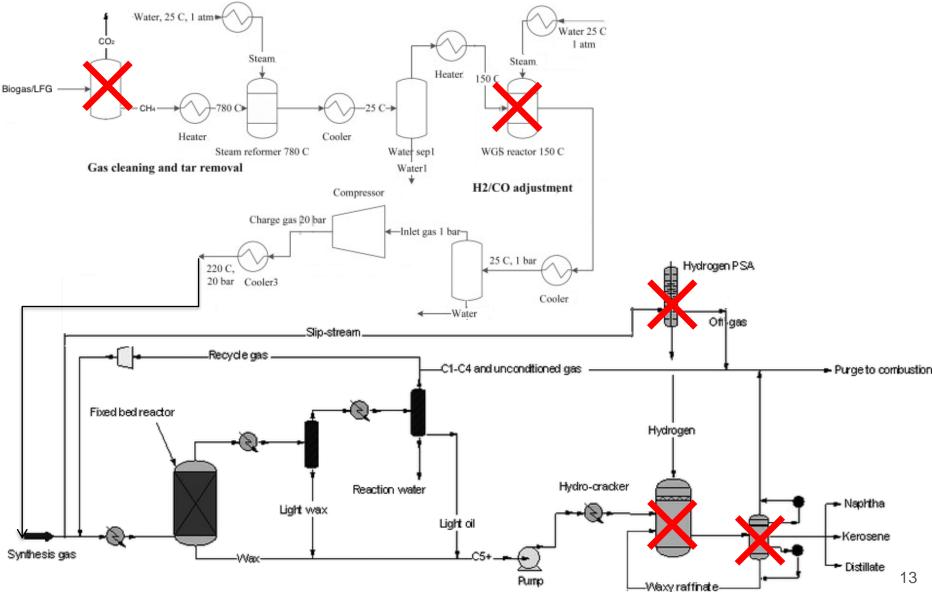
Commercial

ASTM D975 "Standard Specification for Diesel Fuel Oils"

Fuel Analysis Results

Fuel Analysis, ASTM Standard	Spec (No. 2 Diesel)	Commercial Diesel	TRIFTS LFG	TRIFTS LFG (Dist 55C)
Specific Gravity, ASTM D4052 (g/cc)		0.8215	0.7386	0.7489
Cetane Index, ASTM D976	≥ 40	57.6	84.5	72.7
Cetane Index, ASTM D4737	≥ 40	59.7	92.3	83.4
Flash Point, ASTM D93 (°C)	≥ 52	87	49	57
Cloud Point, ASTM D2500 (°C)		-6	-6	-3
Pour Point, ASTM D97 (°C)		-9	-9	-6
Distillation, ASTM D86 (°C)				
IBP: 0.5wt%		203	143	142
10%		220	164	154
50%		269	234	216
90%	282-338	329	327	314
FBP: 99.5%		378	388	378
Net Heat Comb., ASTM D3338 (MJ/kg)		43.164	44.520	44.355

Pilot/Demonstration Scale Up


35 SCFM LFG Feed 111 Gal/Day Diesel

Example of skid mounted unit

Key Challenges and Approach

Key Challenges and Approach

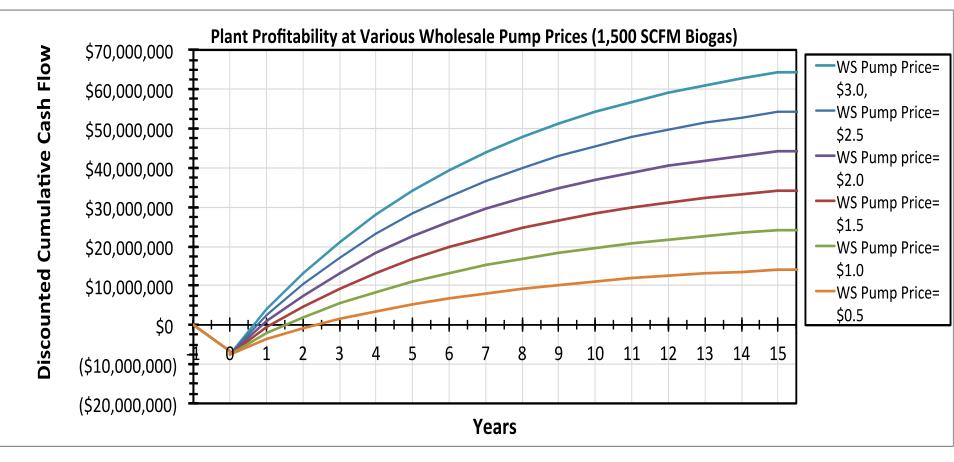
T2C-ENERGY

- Reformer energy requirement met by FTS fuel gas
- Efficient heat integration
- Utility requirements provided by process itself
- Overall self sufficient process
- Minimize any outside fossil fuel derived energy inputs

Energy Requirements and Generation from 1500 scfm					
LFG Plant					
	BTU/hr Required	BTU/hr Produced			
Reformer requires	14,472,000				
Fuel Gas Energy Content		22,488,465			
Boiler	1,820,786				
LFG cooler	160,414				
Reformer HX		7,319,143			
Syngas cooler	1,807,500				
FTS cooler	3,451,114				
FT reactor		9,761,143			
Compressor 1	399,112				
Air Compressor	258,223				
Compressor 2	1,287,300				
Compressor 3	1,068,006				
TOTALS					
Equip/RXN Required	24,724,456				
Energy Produced		39,568,751			
Net Energy Produced		14,844,295			
Additional Electric Power Generation	0.86	MW			
Fower Generation					

Financials

Scale (LFG Flowrate SCFM)	CAPEX	Annual OPEX	Annual Revenue	Annual Profit
500	\$3.5 MM	\$550 k	\$3.5 MM	\$2.1 MM
1000	\$5.2 MM	\$800 k	\$7 MM	\$4.5 MM
1500	\$6.7 MM	\$1 MM	\$10.5 MM	\$7.0 MM
2000	\$7.9 MM	\$1.2 MM	\$14 MM	\$9.5 MM
2500	\$9.1 MM	\$1.4 MM	\$17.5 MM	\$11 MM
3000	\$10.1 MM	\$1.6 MM	\$21 MM	\$14 MM
3500	\$11 MM	\$1.8 MM	\$24.5 MM	\$16.8 MM
4000	\$11.9 MM	\$2 MM	\$28 MM	\$19 MM


Assumptions

- ▶ 15% Interest Rate
- ➢ 35% Corporate Tax
- ➤ 5.5% FCI Maintenance Budget

- ➢ 7 Full Time Staff
- Wholesale Pump Price = \$1.63
- RIN = \$4.47/gal diesel (D3 ~ \$2.63/RIN) EV=1.7

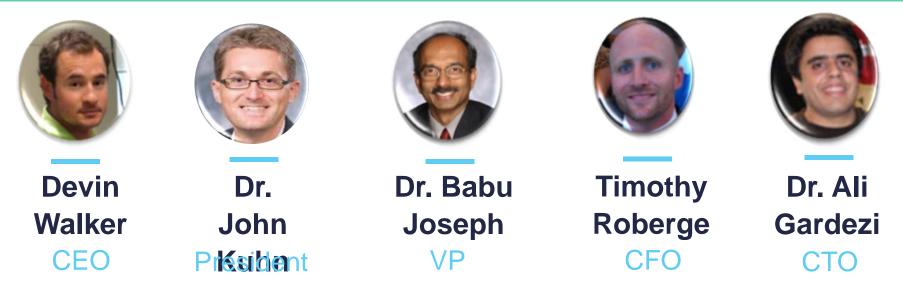
Financials (1,500 SCFM Biogas) 118 bpd (5k gal/day) Diesel Facility

- At current WS pump price of 1.63 NPV = \$34MM
- RIN = \$4.47/gal diesel (D3 ~ \$2.63/RIN)
- Initial Construction Capital \$6.7 MM

Breakeven <u>No RIN credit</u> at 900 SCFM biogas production rate

Unique Aspect Summary

- Utilize 100% of Biogas Feedstock (CO₂ Utilization)
- Significant Reduction of Unit Operations
- Compatible with Current Infrastructure
- High Quality Value Add Product (Drop-In Diesel)
- Self Sufficient Process
- Produce D3/D7 RIN
- Vastly Improved Economics and Profitablitliy



17

Management Team

- 40+ Years in Biofuel Industry
- Recognized Industry Leaders
- Proven Track Record in Technology Scale Up
- Partnered with USCleantech and Renovare Fuels as part of US and Global Business Strategy

Sustainable Solutions for The Waste To Energy Sector