

"Cutting Edge Solid/Hazardous Waste Management Research at FAU"

> Combining Science and Technology To Protect and Conserve Our Environment

Daniel E. Meeroff, Ph.D.

Professor and Associate Chair Director of the Laboratories for Engineered Environmental Solutions (Lab.EES)

2019 Florida SWANA Summer Conference | Hinkley Center Research Colloquium Tampa, FL
July 30, 2019

http://labees.civil.fau.edu

2019 FL SWANA Summer Conference | Tampa Bay, FL • July 30, 2019

Research Focus Areas

Urban Landfills Do you think we might have a nuisance odor issue here?

2019 FL SWANA Summer Conference | Tampa Bay, FL = July 30, 2019

State of the Art

Nasal Ranger

Olfactometry

2019 FL SWANA Summer Conference | Tampa Bay, FL = July 30, 2019

The Key Problem

Fau

LLEGE OF ENGINEERING & COMPUTER SCIENCE

• Subjectivity

Different individual perceptions of odors

Challenges

- Ability to deal with adverse environmental or meteorological conditions (temperature, humidity, etc.)
- Source identification/competing odors
- Sensitivity at very low (<ppb) levels
- Selectivity of odorants in real mixtures
- Synergistic and masking effects
- Subjectivity and individual perception

2019 FL SWANA Summer Conference | Tampa Bay, FL • July 30, 2019

Developed Recommendations

ODOR COMPLAINT LOG FORM FOR LANDFILL ODORS

General Information

- Date of odor complaint:
- Name of the person:
- Address of odor complaint:
- Time of odor complaint:
- Time AM/PM:
- Day in a week:
- Landfill in proximity to odor observation:

Description of Odor

What time was odor first detected?

What time was odor last detected?

Duration of odor (minutes or hours):

Location: indoors/outdoors:

Strength (1-5, with 1 being very light and 5 being very strong):

Character (type):

Meteorological Conditions at Time of Odor Observation

FAU

COLLEGE OF ENGINEERING & COMPUTER SCIENCE

Temperature (°F):

Wind speed (mph):

Wind direction:

Sky conditions:

Precipitation accumulation (inch):

Pressure (inch):

Humidity (%):

- Temperature/humidity
- Precipitation
- Atmospheric stability class (A – F)
- Pressure drop over the previous 24 hours

Critical

Odor complaints are expected imminently

Severe

Odor complaints are highly likely

Substantial

Odor complaints are a strong possibility

Moderate

Odor complaints are possible, but not likely

Low

Odor complaints are unlikely

Daniel E. Meeroff, Ph.D. © 2019

Potential Solution for Quantifying Odors

- What if instead, we looked at this problem from the other direction?
 - For example, in wastewater there are simply too many organic constituents to distinguish
 - So we use an indirect, composite test for aggregate organics (i.e. BOD)
 - So why not do the same thing with odorants?
 - Since people only complain when odors are bad, is there a way to quantify an aggregate odor intensity (objectively)?

Used Biology as an Inspiration

ENSO Y -

Ó

ø

 \odot

Proposed Approach

- Known protein isolates (hOBP2A) can bind with odorants in the µM-range
- Odor intensity is based on the number of bound receptors (non-specific?)
- If so, we can spectroscopically tag hOBP2A and its binding response will be concentration-dependent and follow Beer's Law (quantitative)
- May be reversible too

Mechanism

Daniel E. Meeroff, Ph.D. © 2019

Objectives

- Create prototype biosensor
 - hOBP2A + 1-AMA tag complex
- Expose biosensor to odorants for various times
 - Single odorants and mixtures
- Measure spectroscopic signal to determine concentration dependence and quantitation range

Quantitation Range for H₂S

- Initial experiments showed maximum detection limit occurs around 4 minutes
 - 100 mL of biosensor @ 0.5 lpm
- Under these conditions, the maximum quantitation limit appears to be ~4-5 µg H₂S

Quantitation Range for H₂S

- Initial experiments showed maximum detection limit occurs around 4 minutes
 - 100 mL of biosensor @ 0.5 lpm
- Under these conditions, the maximum quantitation limit appears to be ~4-5 µg H₂S
- Miniaturized to 10 mL, the limit is reached in 60 sec

Other Gases Quantitation Ranges

Peak intensity for CH₄ 0.5 slpm Protein:fluorophore 1:1.4

Peak intensity for NH₃ 0.5 slpm Protein:fluorophore 1:1.2

2019 FL SWANA Summer Conference | Tampa Bay, FL • July 30, 2019

Future Work

- Analyze difference in results for acidic, neutral, and basic odorants
 - Initial slopes were same order of magnitude with subtle differences, suggesting we might be able to tease out different odorants in mixtures using binding affinities
- Experiments with mixtures
 - Standard landfill gas" (H₂S, CH₄, CO, N₂)
 - Concentration range for detection/quantitation
 - Flow rate and reversibility

2019 FL SWANA Summer Conference | Tampa Bay, FL • July 30, 2019

Funding Partners

2019 FL SWANA Summer Conference | Tampa Bay, FL = July 30, 2019

2019 FL SWANA Summer Conference | Tampa Bay, FL = July 30, 2019

Biogeochemical Clogging

- Solids analyzed with x-ray diffraction
- Mixtures of leachate modeled with PHREEQC
- Clogging controls tested
 - Electronic pulsed scaling control
 - Dilution water
 - Acid injection
- Impacts to deep injection disposal well analyzed

Main Findings

- Solids are mostly calcite (CaCO₃) with mineral salt impurities and biological residues
- Practical solutions were implemented in the field for managing clogging impacts
- A new mechanism for clog formation was tested and duplicated in the lab
- This is leading to new ideas for clogging control in leachate collection system piping networks

Deep Injection Well Biofilms

- Collect samples from 3 zones inside a deep injection well
 - Mineralogical analysis
 - Dominated by CaCO₃ (>90%)
 - Mineral salts (<10%)
 - High precipitation potential
 - Microbiological analysis
 - Methanogenic archaea & sulfate reducers
 - Entamoeba
 - Enterovirus and Pseudomonas phage

X-ray

Diffraction

DNA Analysis

Electrochemical Oxidation of Leachate

- To determine the treatment performance of EOx, coupled with different pretreatment to remove COD and ammonia from landfill leachate
- Assess the generation of halogenated byproducts (THMs and HAA5)

Raw Leachate

Parameter	Range
рН	7.2 – 8.1
COD	$5,500 - 10,000$ mg/L as O_2
Ammonium-N	$2200 - 3200 \text{ mg/L} \text{ as } \text{NH}_4^+\text{-N}$
BOD	$500 - 700 \text{ mg/L} \text{ as } \text{O}_2$
Turbidity	230 – 1000+ NTU
Conductivity	30 – 80 mS/cm
Temperature	~25°C
TDS	23 – 54 g/L
Chloride	8 –14 g/L as Cl ⁻

EOx Reactors

OriginClear Roughing EOx Reactor

Magneli EOx Polishing Reactor

COLLEGE OF ENGINEERING

Main Findings

- Pre-Treatment
 - Ozone
 - Fenton's Reagent
 - Lime
 - Two-stage EOx

- Higher chlorides increase removal of COD
- Longer reaction times also increase performance
- Maximum performance achieved from preozonation with Magneli EOx
 - COD removal = 52%
 - Ammonium-N removal = 52%
 - THMs = 5500 μg/L
 - HAA5 = 51,000 μg/L

Energy from Waste

- In Florida, organic wastes make up 6-20% of the MSW
 - Only 2-5% is diverted from landfills
 - So ~2 million tons/yr landfilled
 - High moisture content (70%)
 - Low heating value (<2500 BTU/lb)*</p>
- So, this stuff is undesirable for WTE, but ideal for anaerobic digestion

*Compared to MSW (~5000 BTU/lb)

Anaerobic Digestion

п	
	1497

- There are 1497 anaerobic digesters in the US
- 83% are used strictly for wastewater applications
- Recent innovations in co-digestion have unlocked the potential for cleaner biogas (65-75% CH₄)
- If 10% of the digester feed is food waste, the biogas output can triple

Food Waste Anaerobic Digestion

- Can we take advantage of unused digester capacity in the wastewater sector to generate more clean biogas from diverted food waste?
 - Ultimate digestibility testing
 - Biogas production
 - Methane content
 - VS destruction
 - Meat trimmings from butchers and FOG from grease traps
 - Various feedstock ratios
 - (1:2 1:10) at SRT = 7 28 days

Major Findings

- Typical biogas production rate (0.2 0.5 m³/kgVS) for anaerobic digesters was surpassed at SRT > 21 days
- Maximum biogas production
 - Meat 1:7 (0.23 m³/kgVS)
 - FOG 1:4 (0.52 m³/kgVS)
- Methane production was >60% for both feedstocks
- With these values, diverting 0.6% of Palm Beach County food waste to one digester would produce enough power for 130 – 360 homes

Watershed Management

- Catalog and analyze Florida watershed data and maps
- Develop a screening tool for flood management and apply to coastal and inland watersheds
- Develop guidance for preparing watershed management plans to improve CRS score

2019 FL SWANA Summer Conference | Tampa Bay, FL • July 30, 2019

Daniel Meeroff, Ph.D. Associate Chair & Professor Director, Laboratories for Engineered Environmental Solutions

Civil, Environmental & Geomatics Engineering 777 Glades Rd., Bldg. 36, Rm. 206 Boca Raton, FL 33431 tel: 561.297.3099 email: dmeeroff@fau.edu http://labees.civil.fau.edu

