

"Protecting What's Built, Restoring What's Broken

<u>Steve Carl, President</u> <u>Manny Hernandez, PE, BCEE, EVP</u> <u>Specialists in Landfill Chemical Cleaning,</u> <u>Leachate Treatment & Re-Use</u>

Copyright 2009, Progressive Environmental Services, LLC

Products:

Pipe and Well Renew[™] Products
Free Flow[™] for Micro Irrigation & Soils

Services: •Chemical Cleaning •Leachate Sump Performance Evaluation •Phytocap Design & Management

Wastewater Treatment Plants

Landfills

W

Why am I here?

Everyone has it.

What is "it"?

		MSW/Ash	MSW/Ash	MSW/Ash	MSW/Ash	Ash Mono	Ash Mono
Parameters	Units	1	2	3	4	1	2
Inorganics							
Chloride	mg/L	18,000	14,000	760	12,000	41,000	44,000
Sulfate	mg/L	630	570	560	990	280	240
Total Alkalinity	mg/L	6,100	780	2,700	9,900	330	330
Total Organic Carbon	mg/L	4,200	390	2,100	12,000	7.0	7.9
Metals							
Calcium	mg/L	920	1,300	34	1,400	6,000	7,600
Iron	mg/L	75	13	3.0	270	0.05	0.6
Magnesium	mg/L	150	110	29	230	30	23
Sodium	mg/L	5,600	4,500	500	5,400	12,000	13,000
Metals, Dissolved							
Iron	mg/L	65	6.0	3.2	21	0.02	0.06
Silica (SiO2)	mg/L	93	38	70	170	141	15
Volatile Fatty Acids							
Acetic Acid	mg/L	2,700	1.8	3,500	8,700		
Propionic Acid	mg/L	940	-	810	3,000		
Butyic Acid	mg/L	1,200	0	1,400	4,000		

Typical Rochem Treatment Results:

			RO 1	RO 2	
Parameter	Units	Leachate	Permeate	Permeate	Rejection
Total Dissolved Solids	mg/L	23,800.0	308.31	16.5	99.9309%
Biological Oxygen Demand	mg/L	392.0	39.10	3.4	99.1326%
Chemical Oxygen Demand	mg/L	9,070.0	163.29	2.9	99.9679%
Total Organic Carbon	mg/L	7,330.0	187.00	4.7	99.9365%
Total Suspended Solids	mg/L	57.0	0.80	0.0	99.9805%
Arsenic	mg/L	1.100	0.040	0.001	99.8734%
Chloride	mg/L	5,730.0	151.45	3.902	99.9319%
Chromium	µg/L	780.0	4.19	0.023	99.9971%
Iron	µg/L	4,200.0	3.06	0.002	99.9999%
Kjeldahl Nitrogen	mg/L	7,970.0	841.39	76.822	99.0361%
Ammonia-Nitrogen	mg/L	1,800.0	59.95	1.924	99.8931%
Nitrate	mg/L	0.2	0.02	0.002	99.0361%
Phosphate	mg/L	5.50	0.122	0.003	99.9519%
Potassium	mg/L	2,000.0	47.46	1.103	99.9449%
Sodium	mg/L	5,100.0	118.38	2.694	99.9472%
Zinc	mg/L	0.1	0.00	0.000	99.6487%
Phenol	µg/L	1,100.0	220.01	34.006	96.9085%
Mercury	ng/L	196.0	3.70	1.000	99.4898%
Perfluorooctanoic acid (PFOA)	ng/L	820.0	2.50	<1.9	>99.7682%
Perfluorooctanesulfonic acid (PFOS)	ng/L	200.0	<2	<1.9	>99.0500%
Perfluorohexanoic acid (PFHxA)	ng/L	2,100.0	7.80	<1.9	>99.9095%

Multistage Systems to Meet any Requirement:

Leachate & Precipitate Characteristics

- Leachate analysis and geochemical modeling showed thermodynamically favored precipitation of hydroxyapatite and calcite.
- BART showed high populations of SRB and IRB.
- XRD of precipitate showed presence of calcium carbonate, brushite, and gypsum.
- *Sludge* of Biomass and Mineral Precipitant

Gravity Systems

Reaching the Back

Chemical Cleaning - FOAM

Cleaning Demonstration Results

- Chemical Cleaning
 - Over 2,000 feet per week (up to 12,000)
 - \$20 to \$40/foot (as low as \$6/foot)
 - Flow increases to 6X-8X+

"Chemical cleaning determined to be the best technology for removing heavy precipitate buildup" – CDM Smith

"Jetting fine, not enough leachate production"

Bioreactor Landfill

Results LCS 1 Cleaned, LCS 2 Control

			Phas										
		NCLF Phase I	LCS #1		LCS #2								
Month	Rain	Collected	Subcells 1 & 2		Subcells	3 & 4							
			Gallon	Gallons		3							
	(Inches)	Gallons	Primary	Secondary	Primary	Secondary							
			See Note #4										
2012													
January	0.00	112,488	42,811	70	26,111	210							
February	0.00	89,130	32,479	0	32,865	90							
March	0.99	99,292	41,250	50	34,336	270							
April	0.79	94,065	41,190	40	31,451	271							
May	2.32	91,733	51,862	50	33,794	280							
June	11.11	125,786	41,374	30	47,717	6,229							
July	6.47	96,999	114,836	490	29,042	3,697							
August	7.69	112,521	71,227	370	31,031	7,088							
September	4.26	144,561	68,099	250	26,717	6,199							
October													
November													
December													
YEAR TO													
DATE	33.63	966,576	505,127	1,350	293,064	24,334							
TOTALS													

Single LCS Lateral Ash Monofill

- Time to fill a 5 gallon bucket
- Before
 - 2 minutes, 34 seconds
 - 2.57 minutes
 - 2.95 gallons per minute
- After
 - 19 seconds
 - 0.32 minutes
 - 15.6 gallons per minute
 - 8X improvement in flow

• Video Inspector: "We've never seen this much flow"

MSW LF, Force Main, 37 Sumps, 2 Boosters

Before

- Operating Pressure: <u>80-100 psi</u>
- Multiple pumps per station
- Booster pump Stns-2
- Flow rates: 5-25 gpm per pump

After

- Operating Pressure: <u>5-10 psi</u>
- Single pumps in Auto
- Booster pumps taken off line
- Flow rates: 55-100 gpm per pump

Time reduction on liner?

Chemical Cleaning

Side Slope Risers & LCS Line

Before

• Monthly discharge of 100,000 gallons per month.

After

• Monthly discharge of 500,000 gallons in month post cleaning

Time reduction on liner?

C & D Landfill

- Gravity Main & LCS blockages
- Severe Seeps on LF side
- Perforated LCS, GMs and Manholes.
- Cleaning next to site discharge: Neutralization

Landfill Gas Systems

Chemical Cleaning – LFG Wells

Chemical Cleaning - LFG

Well Data Log Sheet, Monthly Testing Report

Well #			PW	D.P.	T°f	OP		Landfill Gas Analysis:				Status:	Req. Days:						
	Date Time	PH					CFM	CH4	CO2	02	Bal.	Well	Valve	Action	5	15	120		
	154	01/14/15 9:20 🔇	-17.9	-16.9	0.23	99	1.000	5.91	39.6	31.3	3.6	25.5	ACTIVE	OPEN					
	154	02/12/15 13:22	-6.8	-6.5	0.20	92	1.000	5.66	32.9	30.9	4.6	31.6	ACTIVE	OPEN	- -				1
	154	03/18/15 9:17 🔇	-11.8	-11.2	0.10	120	1.000	3.79	34.6	33.7	4.5	27.2	ACTIVE	OPEN					-
	154	04/06/15 13:50	-9.6	-9.2	0.20	105	1.000	5.51	33.2	26.8	2.6	37.4	ACTIVE	OPEN					
	154	05/11/15 12:29	-6.2	-3.2	0.24	122	1.000	5.89	57.6	42.4	0.0	0.0	ACTIVE	OPEN	1				-
	154	06/03/15 9:48	-5.7	-2.0	0.21	122	1.000	5.51	55.3	44.7	0.0	0.0	ACTIVE	OPEN					

Flooded Difference header ver well ver low DP, equal PH& PW Jan - Apr 15 => flouded May & June => better & higher guality gas

Gas Collection Changes

- Multiple Sumps and Gas Wells
- Following 4 sites now
- Increase Gas output 30-40%
- GTE plant results: Cost of cleaning in 6-8 weeks.

<u>Every landfill has differences</u> <u>and similarities.</u>

<u>Cells within landfills have</u> <u>differences and similarities</u>

<u>High leachate levels from heavy scaling</u> <u>and Goo are a common major problem</u>

<u>Goo progressively gets worse.</u> <u>Goo can travel from cell to cell.</u> <u>Goos are very similar chemically</u> <u>but they change with age.</u>

> <u>Chemical Cleaning</u> <u>Re-builds new systems.</u>

Know your Gravel Pack (also please share with PES...Please.)

Calcium Carbonate (lime) Travels

Adjust expectations

Transducers Scale

<u>Timing of sump pump & recharge plus</u> <u>level confirmation for assessment</u>

<u>Scheduled/Routine maintenance for</u> <u>system integrity is better than crisis fix.</u>

The longer you wait the worse it gets.

<u>Severe Goo/Scaled Cells require</u> <u>cleaning 2-3 times before clearing up.</u>

<u>Severe Goo clogs Gas Wells and reduces</u> <u>gas collection.</u>

<u>Planned cleaning programs stay ahead.</u>

"P&WR Goo" Injection for Maintenance

Design & Operational Considerations

- Correlation between precipitate formation & leachate flow.
- Access to the system in future designs.
- CDMSmith
 - Minimal flow / stagnant conditions create saturated zones, allowing formation and growth of precipitate
 - Keep leachate levels as low as possible
 - Minimize outflow response time
- PES Hypothesis (working with EREF-Dr. Craig Benson)
 - Perched Leachate leads to "Goo", "Flubber", "Jelly", etc.
 - (Maybe?.....Probably): Other contributing factors.

Questions, Answers and Surmisals

"Protecting the Environment

is a daily choice."

Rodney Hamby, Landfill Superintendent, Catawba County, NC

steven.carl@progressive.us.com; Cell: 757-531-6602 manuel.hernandez@progressive.us.com; Cell: 786-897-5815 steve.worley@progressive.us.com; 757-477-7615

> "Www.protectingwhatsbuilt.com "Protecting What's Built, Restoring What's Broken"

> > Copyright 2019, Progressive Environmental Services, LLC