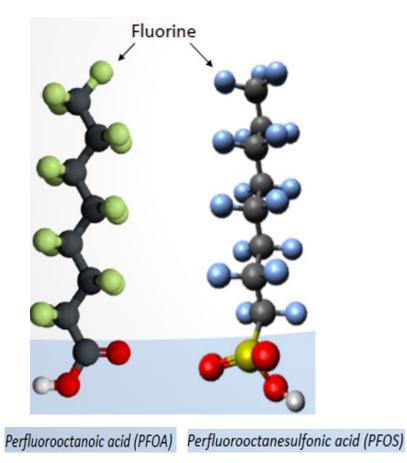


LEACHATE AND LANDFILL LIQUIDS COMMITTEE SWANA

Operation and Cost Considerations PFAS Treatment in Landfill Leachate

Florida SWANA Winter Conference


Orlando, FL

- Ivan A. Cooper, PE, BCEE
- Civil & Environmental Consultants, Inc.
- February 20, 2024

- Timing
- Operational Considerations
 - Construction
 - Operations
 - Utilities
- Costs
- Summary

Agenda

Federal Regulatory Timing

- 2023 activities
 - EPA's national primary drinking water regulation for (PFOA), (PFOS), (PFNA), (PFHxS), (PFBS), and GenX)
 - EPA's rule designating PFOA and PFOS as CERCLA hazardous substances
 - EPA's proposed listing of PFOA, PFOS, PFBS, and GenX as RCRA hazardous constituents
 - DoD's proposal to prohibit procuring products containing PFOA or PFOS
 - Recommending Sampling/reporting
- Jan 31 2024 EPA Proposed Rule
 - Definition of Hazardous Waste Applicable to Corrective Action for Releases from Solid Waste Management Units
 - o Listing of Specific PFAS as Hazardous Constituents
- Plan 15 Schedule
- EPA Landfill Study ~ 4 years
- Implementation to put systems on-line ~ 3 years
- Bottom Line system operational 2030

Regulatory Timing

- Florida Proposed
 - Possibly more aggressive than Feds!
 - Local Permits/Actions –Limiting or banning acceptance
 - FL HB 1665 As of Jan 13 -in Water Quality, Supply & Treatment Subcommittee
 - FL SB 1692 –As of Feb 8 Favorable by Appropriations Committee on Agriculture, Environment, and General Government; YEAS 9 NAYS 0, Now in Fiscal Policy
- Start Planning Now!

FL HB 1665 /SB 1692 - PFAS and 1,4- Dioxane Pretreatment Initiative

- Preventing contaminants of emerging concern from discharging into wastewater facilities and waters of the state.
- Requires wastewater facilities to conduct inventory of industrial users that are probable sources of specified contaminants
- Authorizes wastewater facilities to develop and propose local limits for PFOS, PFOA, or 1,4-dioxane
- If adopted,

Starting July 2025, Interim specific discharge limits for industrial users:

PFOS, 10 nanograms per liter (10 ppt) PFOA, 170 nanograms per liter (170 ppt) 1,4-dioxane, 200,000 nanograms per liter (0.2 ppm)

- Complex mixture
 - Organics VOC and SVOC
 - Ammonia/TKN
 - Metals
 - Others
 - PCB
 - 1,4 dioxane
 - Pesticides
 - PFAS
 - Variability
 - Between LFs
 - Daily Variability concentrations/flows
 - Disposal
 - Pretreated or not
 - POTW or direct discharge
 - PFAS Treatment is a Train of Technologies
 - Pretreatment Removal/Concentration Management/Destruction Effluent Polishing

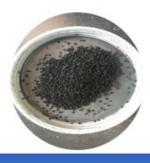
Leachate Considerations

- Few Process are single unit operations
- Commercial Status Full Scale / Limited / Developing or Laboratory

Segregation – Adsorptive	Segregation- Physical Chemical	Destructive
Activated Carbon Granular Colloidal Ion Exchange Polymers Modified bentonite Mixed Media	Reverse Osmosis/Nano/Ultra Foam Fractionation Deep Well Injection Cementitious encapsulation	Plasma Thermal Supercritical Oxidation Electrochemical Photochemical Oxidation/Reduction Persulfate Sonolysis UV Permutations Pyrolysis Mechanochemical Degradation Hydrothermal Alkaline - HALT

Operational Concerns

LEACHATE AND LANDFILL LIQUIDS COMMITTEE SWANA


- Flexibility
 - Changing regulations means new equipment how to adjust?
- System Costs
 - Replacement media, backwash or other waste, residuals disposal
- Training
 - Can staff work with equipment finding new staff?
 - Operator certification
- Operator Friendliness
 - Monitoring/Flow volumes
 - SCADA or Phone Apps
 - Media accessibility/changeouts storage onsite and delivery issues
 - Tools needed
 - Testing
- Ease of Installation
 - Tanks or inside a building
 - Piping changes welding or plastic
- Adaptability
 - How flexible is each process to continual changes in treatment requirements/New permit limits?

Current Liquids Treatment Technologies (Usually Treatment Trains)

- Separation Technologies
- Most Amenable to Leachate Treatment
 - Activated Carbon
 - Resin
 - FluoroSorb/Mixed Media
 - RO
 - Deep Well
 - Foam Fractionation

GAC

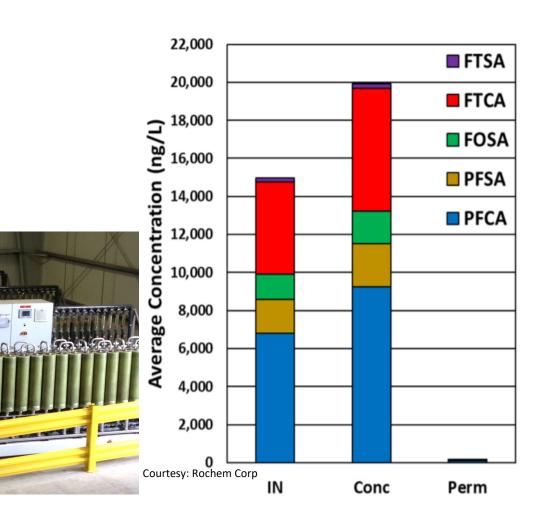
Source: Australian DOD 2018

Source: NH Business Review 2018v

LEACHATE AND LANDFILL LIQUIDS COMMITTEE **Operational Issues**

Cons Technology Pros Granular Activated Effective for Long Chain PFAS Needs RSSCT Test to evaluate breakthrough Carbon Simple to Operate Large Quantities of spend media Simple to Change Media (Service) Needs good pretreatment - Ultrafiltration, biological GAC Can be reactivated and reused treatment (Pretreatment requires treatment waste Many vendors/suppliers disposal) Relatively temperature insensitive Short chains PFAS breaks through quicker Treated flow for dust control After saturation, needs changeout - can be frequent Washout of media, especially after changeout, contains PFAS. Therefore, need backwashing after changeout Flow sensitive to prevent channeling/rat-holing Activated carbon may become fouled biologically reducing effectiveness. May need to bleed bleach Specialized equipment to prevent dust generation and uniform distribution in tanks Can be resource intensive over long times for testing and replacements

LEACHATE AND LANDFILL


Operational Issues

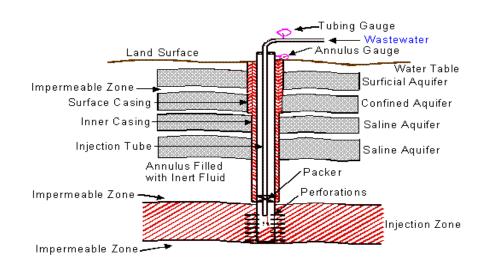
LIQUIDS COMMITTEE Technology Cons Pros Needs Pretreatment and often Post treatment Ion Exchange Can remove most compounds, GenX Not flow sensitive Other constituents interfere – iron, chlorides, TSS, etc. . • Short detention time compared to When will breakthrough occur? ٠ Ion Exchange Resin other adsorbents Regeneration at site of offsite, or disposal. If regenerated, results in concentrated PFAS stream Lasts longer than Activated Carbon, so • less frequent changeout or **Biological fouling** • Add bleach – may cause some IX to foul or become regeneration "blocky" – Gel types Relatively temperature insensitive Replacement media very costly

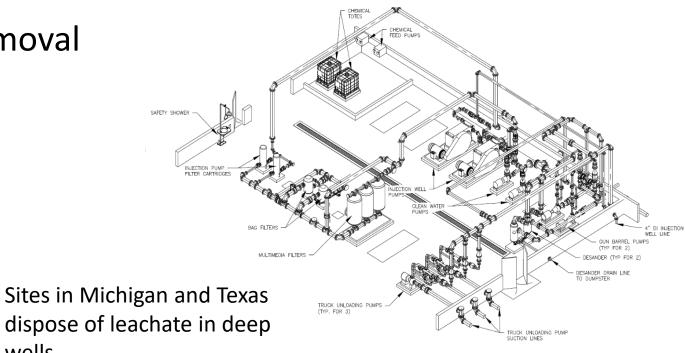
Reverse Osmosis Leachate Process Flow

- Membrane Based Separation Process- 99.9% removal +/-
- Separates Water from Organic and Inorganic Compounds.
- Effluent for reuse or disposal.
- What to do with Reject???
 - Recirculation returns the contaminants to the landfill.
 - Solidification
 - Evaporation Crystallization
 - Heat needed
 - Air Emissions
 - Other
 - Electrochemical Oxidation
 - Plasma

Operational Issues

Technology	Pros	Cons
Reverse Osmosis, NF	 2 or 3 stage very effective Robust monitoring available Some Mfg. do not require pretreatment (filters on skid) Membranes last years Permeate reuse on site for dust control 	 Requires high pressures – big amp draw Problems with high TDS – permeate percentage reduced Generates large amounts of reject to manage Fouling - Cleaning frequency/chemicals Requires housing in a building Depends on membranes, may not remove all PFAS May need to be chained with other technologies



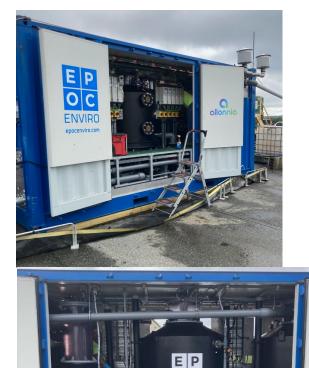

Deep Well Injection

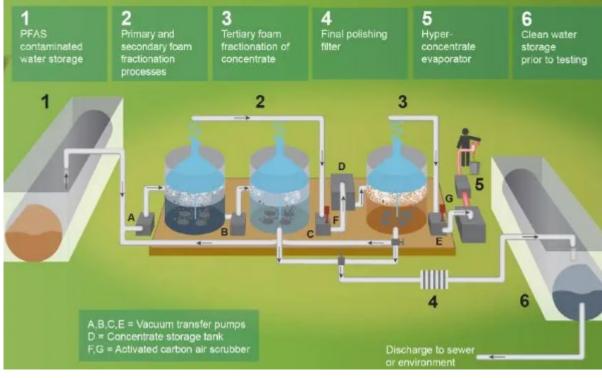
wells

LEACHATE AND LANDFILL LIQUIDS COMMITTEE SWANA

- Depends on Geology, Receptors, Seismicity
- Long, Expensive Permit Time
- Pretreatment/Filtration, Ion Removal
- High Pressure Pumps

Operational Issues


Technology	Pros	Cons
Deep Well Injection	 Others manage disposal O&M may be low 	 Pretreatment to prevent clogging formation Manage pretreatment residuals CAPEX Can be costly Needs nearby disposal well Manage hauling trucks


Foam Fractionation

LEACHATE AND LANDFILL LIQUIDS COMMITTEE SWANA

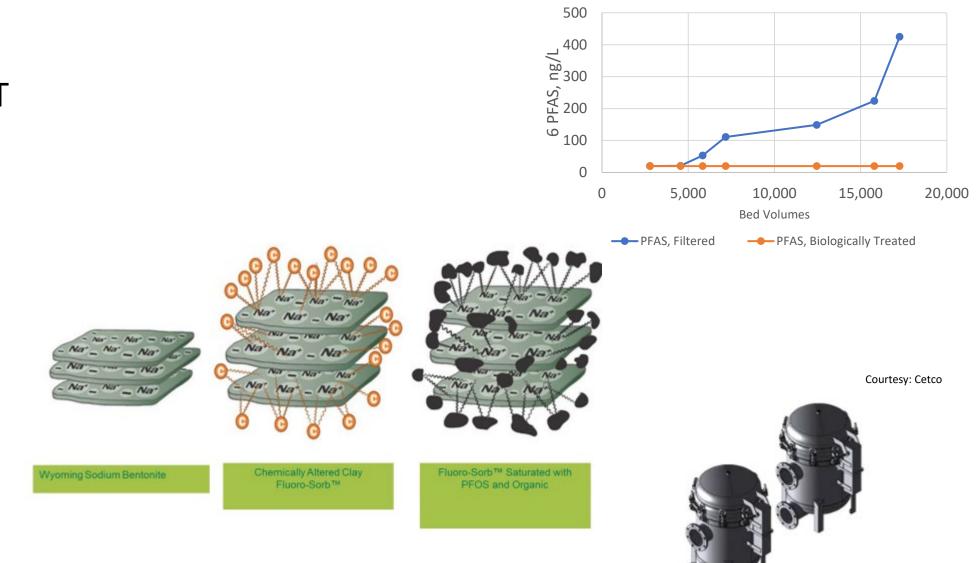
• Removal of six Massachusetts PFAS to below drinking water standards

C Ionnia

LEACHATE AND LANDFILL

Operational Issues

Technology	Pros	Cons
Foam Fractionation	 Commercially available Internet support for process monitoring and changes Comes in 40-foot containers Can be located outdoors Low operating costs Low volume concentrate –needs solidification/destruction 	 Pretreatment recommended Incomplete removal of all PFAS Skimming and disposal of foam Residual concentrated PFAS disposal/destruction Possible additional treatment of FF leachate/combined treatment Reactor plugging by fluoride salts Vary operational parameters by aeration rate, pH, temp. salinity, surfactants, stability quality foam


• 3 minute EBCT

FLUORO-SORB[®] 200 adsorbent

Surface Modified Bentonite (Adsorbent)

Modified Bentonite PFAS Effluent

Operational Issues

LEACHATE AND LANDFILL LIQUIDS COMMITTEE SWANA

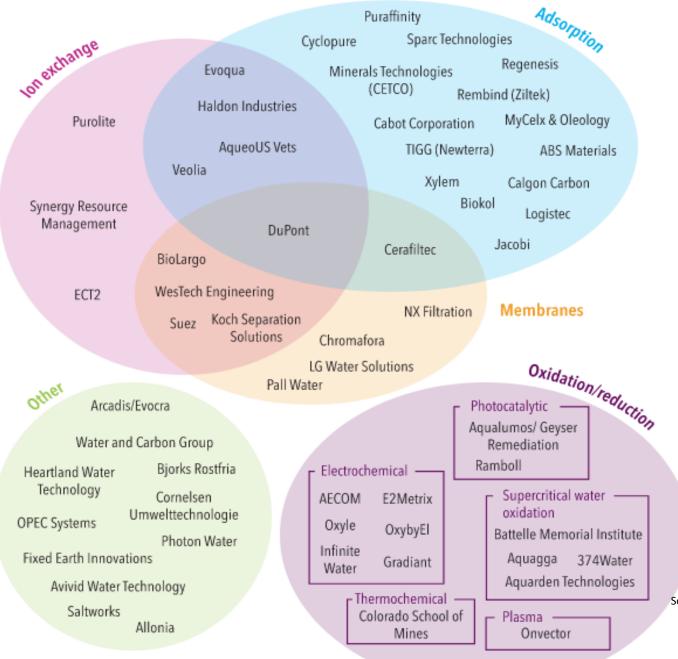
Technology	Pros	Cons
Surface Modified Bentonite (FluoroSorb)	 Commercially available Monitor flow and pressures Clay plates separate and give longer life Longer bed life than activated carbon Research active – improvements coming! 	 Pretreatment recommended Focus on PFAS, no removal other constituents Better at removal of long chain than short chain PFHxS, others often bleeds through Static bed versus fluidized bed installation Replacement of media Treatment of expended media May bleed PFAS if not stabilized Possible post-treatment of leachate

Evaporation

STO N

Courtesy: Heartl;and

Courtesy Encon Evaporators


Operational Issues

Technology	Pros	Cons
Leachate Evaporators	 Mature designs Significantly reduces volumes May be candidate for residuals or entire leachate flow 	 Costly Significant design/construction time Large energy consumption Needs concentrate management May not remove all PFAS Some may be emitted in exhaust Visual plume maybe objectionable Public perception

Residuals Technologies

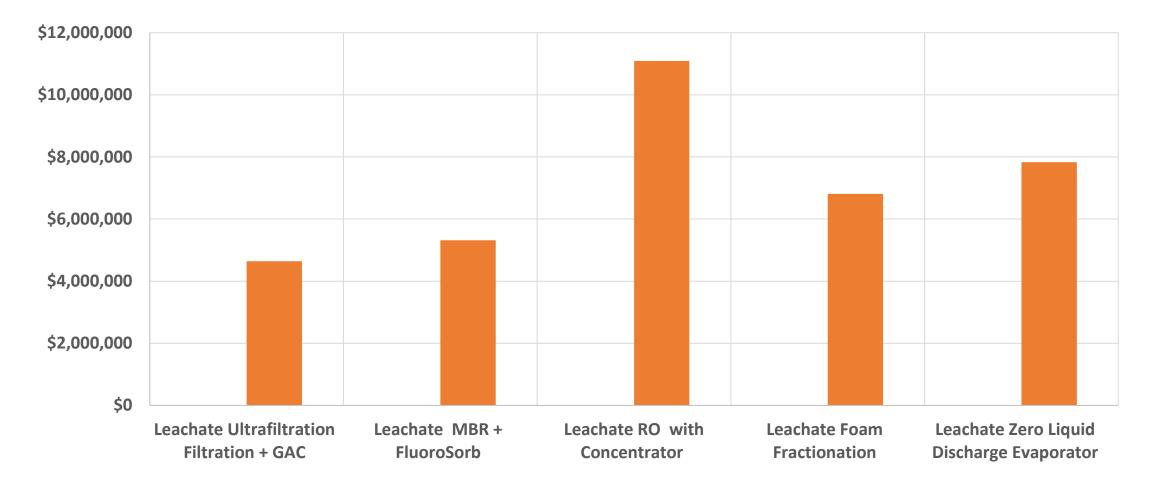
- Destruction
 - Incineration
 - Plasma
 - Supercritical Water Oxidation
 - ElectroChemical Oxidation
 - Deep Well Injection
- Stabilization/Solidification
 - Cementitious S/S
 - Encapsulation (In totes or vessels)
 - Holcim/ADC
 - Return to the landfill
 - Hazardous Waste Landfill Haul and Dispose

Current PFAS Market Players

Source: PFAS treatment market concentrates on waste reduction and total destruction, GWI, May 2021

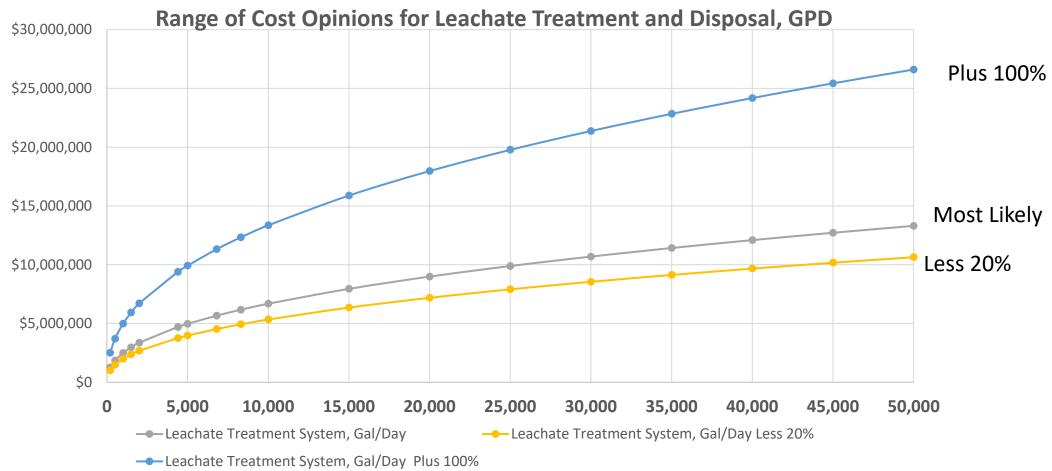
Cost Opinion of Various Leachate Pretreatment Alternatives

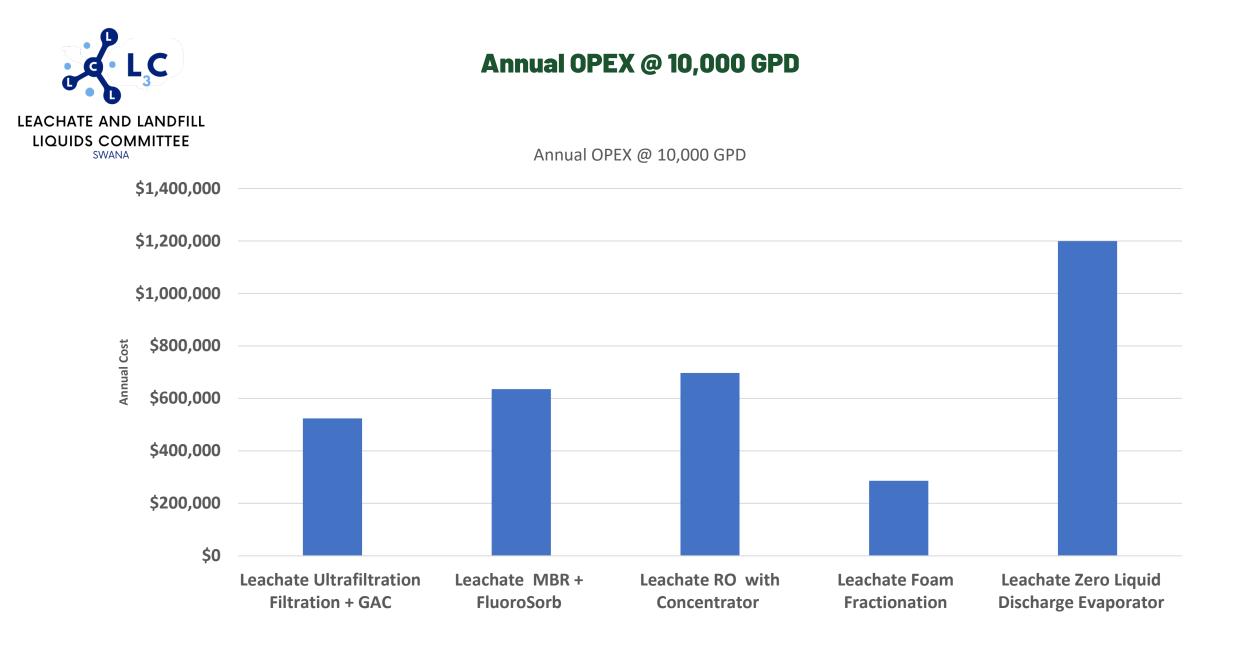
LEACHATE AND LANDFILL

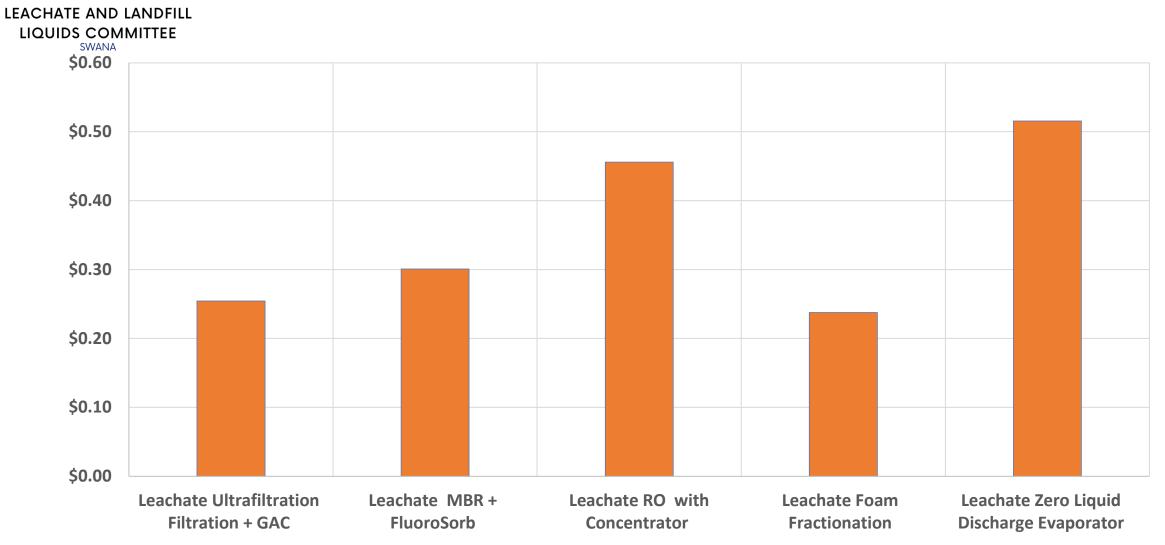

LIQUIDS COMMITTEE

SWANA

Major Process Description	Flow Rate	Low CAPEX Less 20%	Mid - Opinion	High CAPEX Plus 100%	Annual OPEX	Treatment System Life Cycle Cost - Present Worth	Mid opinion annual Capital Recovery Factor (CRF) = 0.087186	Combined Annualized Cost, CRF + OPEX	Treatment Cost/Gal
Leachate Ultrafiltration Filtration + GAC	10,000 gpd	\$3,714,000	\$4,642,000	\$9,284,000	\$524,000	\$10,700,000	\$405,000	\$929,000	\$0.25
Leachate MBR + FluoroSorb	10,000 gpd	\$4,252,000	\$5,315,000	\$10,630,000	\$635,000	\$12,600,000	\$463,000	\$1,098,000	\$0.30
Leachate RO with Concentrator	10,000 gpd	\$8,875,000	\$11,094,000	\$22,188,000	\$697,000	\$19,100,000	\$967,000	\$1,664,000	\$0.46
Leachate Foam Fractionation	10,000 gpd	\$5,341,000	\$6,676,000	\$13,352,000	\$286,000	\$10,000,000	\$582,000	\$868,000	\$0.24
Leachate Zero Liquid Discharge Evaporator	10,000 gpd	\$6,266,000	\$7,833,000	\$15,666,000	\$1,199,479	\$21,600,000	\$683,000	\$1,882,479	\$0.52




CAPEX Leachate Treatment @ 10,000 GPD



CAPEX Impact of Size on Costs Based on Foam Fractionation

Lo Landfill Leachate PFAS Treatment and Disposal Cost/Gal (CAPEX and OPEX) @ 10,000 GPD

Treatment Challenges

- Carboxylates (ex. PFOA) harder to remove than Sulfonates (ex. PFOS)
- Longer chain easier to remove/destroy than shorter chain
- Many technologies focus on longer chain, shorter chain problematic
- Many technologies require multi step processes , time to permit & construct!!!
- Mixtures, precursors, co-contaminants means more testing
- Energy intensity means more costs
- Limited field-scale examples
- Life cycle costs?
- More testing and operations time

Questions?

Ivan A. Cooper, PE, BCEE Civil & Environmental Consultants, Inc.

3701 Arco Corporate Drive Charlotte, NC 28273 704-226-8074 icooper@cecinc.com

Residuals Technologies

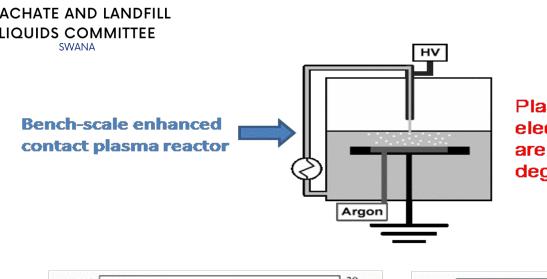
- Destruction
 - Incineration
 - Plasma
 - Supercritical Water Oxidation
 - ElectroChemical Oxidation
 - Deep Well Injection
- Stabilization/Solidification
 - Cementitious S/S
 - Encapsulation (In totes or vessels)
 - Holcim/ADC
 - Return to the landfill
 - Hazardous Waste Landfill Haul and Dispose

Incineration

 EPA – 99.99% destruction at 1,400 deg C at 1 second detention time

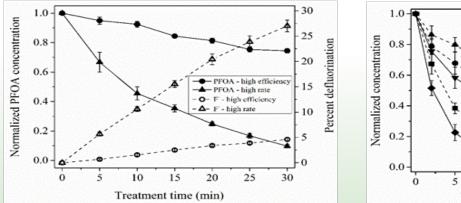
DOD banned for a time

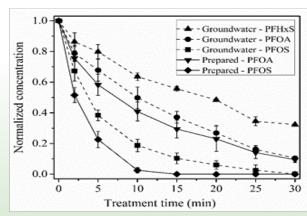
Courtesy Heartland Heliostorm



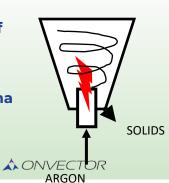
Operational Issues

Technology	Pros	Cons
Incineration	 Monitor flow, turbulence, temperature Possible complete PFAS destruction Ship to offsite incineration Mobile vendors can make periodic visits to manage stored concentrate to avoid costly construction Heartland's Heliostorm operates at 3,000 deg C – more complete destruction? 	 Startup/shutdown procedures Long time to permit/construct Fuel usage Visual emissions/public concerns Possible recombining to other larger molecules Public concerns Expensive to install, operate, maintain




Plasma Destruction

Plasma produces aqueous electrons and H radicals which are capable of chemically degrading PFASs



Plasma hydrocyclone

Water enters tangentially at the top, spins down, then exits at the center top forming a reverse vortex tornado flow.

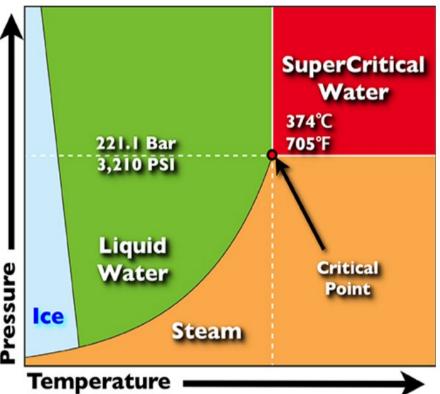
Cyclonic separation of solids

Recirculation of plasma carrier gas (argon)

Major byproducts: fluoride ions, fluorinated gases and shorter-chain PFAAs

Operational Issues

Technology	Pros	Cons
Plasma Destruction	 Monitor flow and pressures Daily operations may be minimal Best used for small volumes of concentrated PFAS removed by other processes (i.e., Foam Fractionation) Possible complete PFAS destruction 	 Under development May not remove or destroy all PFAS Long term operation requirements unknown Treat off-gas (Caustic or Carbon?) Power - Free and hydrated electrons in plasma (reductive reactants) break C-F bonds due to their very high energy (50 to 100 eV)


Supercritical Water Oxidation (SCWO)

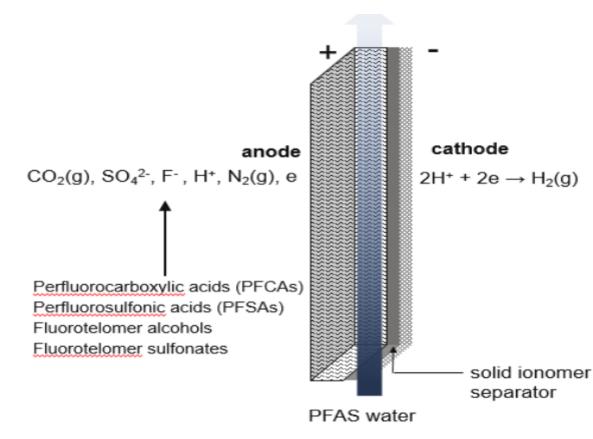
 Water above 705°F and 3,200 lbs/in² -Rapidly destroys PFAS

- >99.99% removal under 10 seconds or less
- If organics, no additional fuel needed
- Creates HF needs neutralization

Figure 1. SCWO reactions occur above the critical point of water. Image credit: Jonathan Kamler.

EPA, Jan 2021

LIQUIDS COMMITTEE


Operational Issues

SWANA Technology Cons Pros Supercritical Water Oxidation **Limited Suppliers** • Monitor flow and pressures, gas (SCWO) emissions Costly to run – depends on waste Daily operations may be minimal stream After initial Temp/pressure, may not Corrosive gases - HF - Treat off-gas (Activated Carbon?), sequestering with require more energy Best used for small volumes of calcium concentrated PFAS removed by other Long term operation requirements processes (i.e., Foam Fractionation) unknown Possible complete PFAS destruction – May not removal all PFAS results in inert ash Materials of construction Several vendors available High Pressure/temperature High energy - Free and hydrated electrons in plasma (reductive reactants) break C-F bonds due to their very high energy (50 to 100 eV)

Various Equipment designs

Electrochemical Oxidation

Several Vendors

• ECT2; Aclarity; Sanexen; Siemens; OXbyEL; others

• Power Requirements:

- 0.125 0.5 kwh/gallon
- 6 volts produces free electrons
- Electrode materials
 - Titanium; boron doped diamond
- Single pass v. multiple pass
- Destroys ammonia too!

Operational Issues

LIQUIDS COMMITTEE

Technology	Pros	Cons
Electrochemical Oxidation	 Monitor flow and power feeds, gas emissions Daily operations may be minimal Operates at ambient temperature Small footprint Several vendors available 	 May need pre and post treatment may be required Long term operation requirements unknown Replacement materials – Expensive electrodes Generates toxic products, HF, Perchlorates formed ?– removal control Long processing time for PFAS destruction Power requirements

Leachate Residuals PFAS Stabilization

• CEC Solidification of SAFF

• 0.6:1 TCLP 99.9% retention all PFAS

PFAS Solidification Trials for Soils

Tests by Dan Cassidy, Western Michigan University - 6% dose Fluoro Sorb achieved < 70 ppt [PFOA+PFOS] in leachate in all soils using TCLP Test.

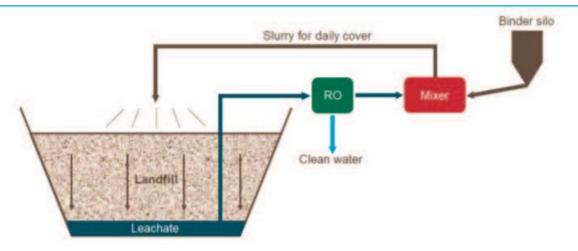
Techniques:

Mixture of generic S/S amendments known to sorb PFAS*: Powdered activated carbon (PAC), Iron oxide (Fe2O3) powder, Montmorillonite clay, Ground-granulated blast-furnace slag (GGBFS), and Portland cement (PC) Fluoro Sorb

Disposal: Landfill Alternate Daily Cover

> [PFOS] = **14,000** - 100,000 ng/Kg [PFAS] = 2,500 - 17,000 ng/Kg

Tested with Fluoro Sorb from Cetco



Fixation of Residuals (Holcim/Lafarge)

• Proprietary cement binder

- No free liquid (Paint Filter Test)
- Friable for use as Alt Daily Cover

MAR- Enviroset	As Received	SPLP
	Results	Results
Sand	ppt (ng/L)	ppt (ng/L)
PFNA	800	11
PFOS	4,900	63
PFOA	1,500,000	390
NY State-		
Enviroset		
Sand		
PFNA	500	ND
PFOS	5,900	ND
PFOA	2,400	ND

LIQUIDS COMMITTEE

Operational Issues

SWANA Technology Pros Cons Possible disposal back to Landfill Solidification Does not destroy PFAS, but reduces ٠ • ADF or in blocks mobility and leachability • Tests to confirm no release ٠ May not be effective on all PFAS Simple, everyday type operation • ٠ Volume and weight - Mass takes up • airspace Time to cure before disposal ٠ ADC proposed – not commercially used • Possibly costly based on volume of ٠ solidification materials