

DESKTOP WASTE CHARACTERIZATION

Sarah Gustitus-Graham SWANA FL Winter Conference, February 2024

AS MUCH FUN AS THIS IS... WHAT IF THERE WAS ANOTHER WAY?

ME

Humacao # 48 06.09-2023

Whitec D

Municipio - San Juan

Desktop vs. Field Waste Characterization

Advantages of Desktop Studies

- Lower cost
- Less time
- Safer
- Low gross factor

Limitations of Desktop Characterization Studies

- Comparable data needed
 - Not suited for identifying temporal variability
- 八

Systemic approach based on statistical analysis of national data is needed

Fundamental Premise

Characterizing The Wasteshed

- Income
- Population
 - Population density (rural/urban)
- Recycling
- Regional/geographic metrics
 - Laws and mandates
 - Culture
- Key industries/institutions
 - Tourism
 - Universities

Unknown Waste

Stream

Desktop Waste Characterization Process

Known Waste Streams

ANALYTICAL HIERARCHY PROCESS

Metric	Α	В	A/B
Population Density	2,600	1,300	2.00
Median Income	\$56k	\$53k	0.95
Tourism	8,000	32,000	0.25
Student Population	15%	5%	3.00

Relationships

Analytical Hierarchy Process Steps

Subjective pairwise comparisons

How important is one metric compared to another?

Metric 1	Intensity	Metric 2	Intensity	
Population	1.0	Median Income	2.0	
Population	1.0	Population Density	1.0	
Population	1.0	Student Population	2.0	
Population	1.0	Recycling Rate	3.0	
Population	1.0	Tourism Industry	1.5	

Median income is twice as influential as population

Use comparisons to weight metrics

Considering all comparisons, how can we score each metric?

Metric	Score
Population	0.10
Median Income	0.19
Population Density	0.10
Student Population	0.19
Recycling Rate	0.29
Tourism Industry	0.14

How do the metrics of each input study relate to the metrics of the unknown area?

Study	Median Income	Percent Difference	Matrix Score	A is twice
Unknown Area	\$50,000	-		as representative
Known Area A	\$51,000	2%	2	as B
Known Area B	\$48,000	-4%	1	

Final score for each study

How does each comparison area relate to the unknown area?

Weighted average composition by study scores

What is the anticipated waste stream of the unknown area based on the known areas?

Metric	Comp Study A	Comp Study B	Comp Study C	Results
Study Weight	0.41	0.27	0.32	
PET Bottles	1.8%	1.4%	2.4%	1.88%
HDPE Bottles	1.0%	1.0%	0.9%	0.97%
Food Waste	13.8%	13.7%	10.2%	12.62%
Yard Waste	14.5%	1.5%	4.0%	7.63%
Aluminum	0.8%	1.2%	1.1%	1.00%
Corrugated Cardboard	5.3%	2.6%	2.8%	3.77%

Pensacola Case Study

Primary Motivation

Preliminary organics technology feasibility

Sectors Assessed

ResidentialICI

Special Considerations Tourism UWF not in wasteshed

Pensacola Case Study

Criteria

- Median income
- Total population
- Population density
- Student population
- Recycling rate
- Hotel/Motel rooms per capita (tourism)

Pensacola Case Study

Newspaper Corrugated Cardboard Brush/Trimmings/Leaves/Grass Food Waste Animal By-Product Other Organics Estimated Tonnage Validation resulted in ±2% per category Year

GEOSYNTEC CONSULTANTS

Massachusetts District Case Study

Primary Motivation

Preliminary anaerobic digestion feasibility

Sectors Assessed

ResidentialICI

Special Considerations

Waste bans in place
Municipality contracts

Massachusetts District Case Study

Criteria

- Median income
- Total population
- Population density
- Presence/absence of organics diversion
- Recycling rate
- In/out of Massachusetts

Pensacola Case Study

GEOSYNTEC CONSULTANT

Summary

Summary

Desktop Characterization is Best When:

- Preliminary assessment is needed
- Multiple comparable datasets are available
- Time and/or budget are constraints
- Supplementing manual data from the same area

" TED, I DON'T THINK THAT'S HOW THEY WANT OUR TRASH SEPARATED."

Summary

(Released by Kirk Anderson, Cartoonist)

Major considerations:

- Proper characterization of wasteshed
- Selection of appropriate studies

Next steps:

 Statistical analysis of trends in waste composition

Sarah Gustitus-Graham SGustitusGraham@Geosyntec.com

Sean O'Donnell SODonnell@Geosyntec.com DRAFT