

CONTENTS

- 1. Truck and Treat vs Evaporation
- 2. Evaporation types
- 3. How evaporation systems differ
- 4. Heat sources and site integration
- 5. Costs and cost considerations

Truck and Treat

- Cheap
- Reliable
- Easy

Turbidity is too high

BOD is too high

• Ammonia is too high

PFAS

• What next??

Truck and Treat

- Cheap (sometimes)
- Reliable (for some sites)
- Easy (until your kicked out)

Turbidity is too high

BOD is too high

• Ammonia is too high

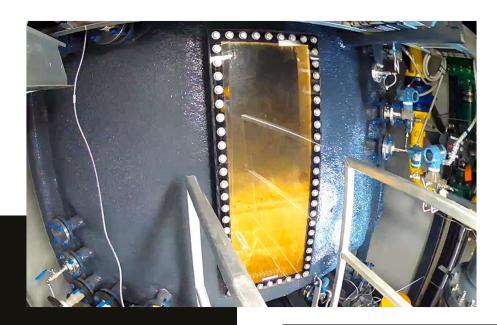
PFAS

• What next??

- · Contains contamination on site
- Predictable cost
- Leachate disposal is in the sites control

LEACHATE INJECTION

Leachate is injected into a hot exhaust stream. The water partially evaporates leaving a concentrate stream.



90-95% Thermal Efficiency

DIRECT HEAT INJECTION

Hot gas is bubbled through the water, driving evaporation.

98% Thermal Efficiency

HOW EVAPORATOIN SYSTEMS DIFFER

- Mobility
- PFAS Capture
- Adaptability

01 30,000 gpd capacity

02 Three day set up

EMISSIONS 45,000 gpd

	Air Permit	Skagen Stack Test		
	lb/hr	lb/hr	% Permit Limit	
PM10	1.35	0.26	20%	
PM2.5	1.59	0.76	48%	
CO	6.81	5.68	83%	

NMOC Destruction	20 ppm	13 ppm	65%
		66	

Fuel - Btu/gallon	504	437

PFAS EMMISSIONS

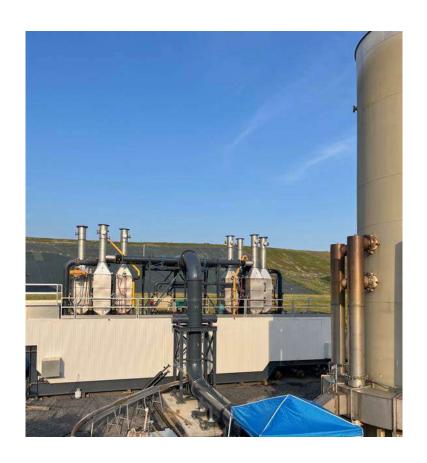
- Exhaust test 1
 - Tennessee
 - 99% capture
- Exhaust test 2
 - Florida
 - Method 1633
 - 99.5% capture

- Exhaust test 3
 - Florida
 - Method 1633+
 - 99.3% capture

STATE AMBIENT AIR GUIDELINES

Ambient Air Guidelines		PFHxA	PFOA	PFBS	ΣPFHxS	Br-PFOS L-PFOS
Michigan	ug/m3	None	0.0700	None	None	0.070
New York	ug/m3	None	0.0053	None	None	None
Minnisota	ug/m3	0.500	0.0630	0.030	0.034	0.011
Texas	ug/m3	None	0.0050	None	None	0.010
Most Stringent	ug/m3	0.500	0.0050	0.030	0.034	0.010

% of most stringent	%	2.8%	65.8%	37.1%	23.7%	< L0Q
70 OF HIOSE SHIFINGERE	70	2.070	03.070	37.1/0	23.770	\ L0Q



AIR EMMISSIONS CHANGES

Drive for insignificance

Ultra-low emissions option

- Increases PFAS capture to 99.9%
- 98% VOC's removal
- 98% Ammonia removal
- Factory option or future retrofit

F700 Series

30,000 gpd Multi Fuel

F1400 Series

60,000 gpd Multi Fuel Split Fuel

F1200 Series

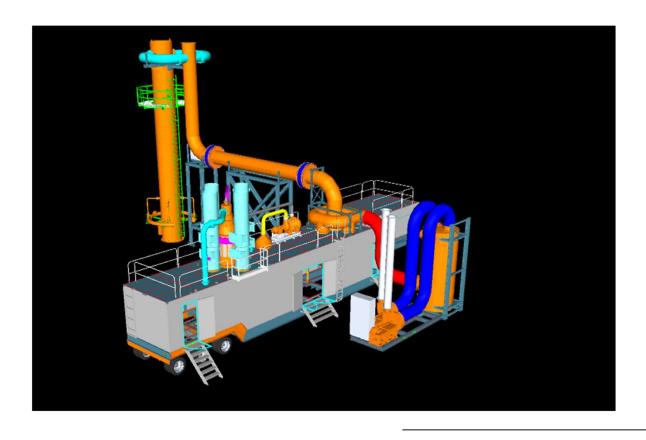
50,000 gpd Multi Fuel + Waste Heat

ADAPTABILITY

FEARING 1200 SERIES

Standard Features include:

- Multi-Fuel
- VOC Stripping
- Low Particulate
- Zero Liquid Discharge Capability
- Mobile

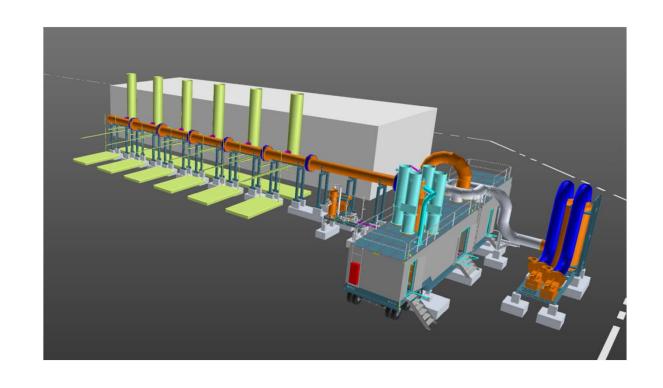


50,000 gpd capacity

Waste heat units use any hot source of hot exhaust gas to drive evaporation.

• • • •

RNG PLANT INTEGRATION



ADATABILITY

• • • •

GAS TO POWER PLANT INTEGRATION

ADAPTABILITY

Deliver a biogas fueled system.
Install an RNG plant.
Convert one tank to waste heat, the other to natural gas.

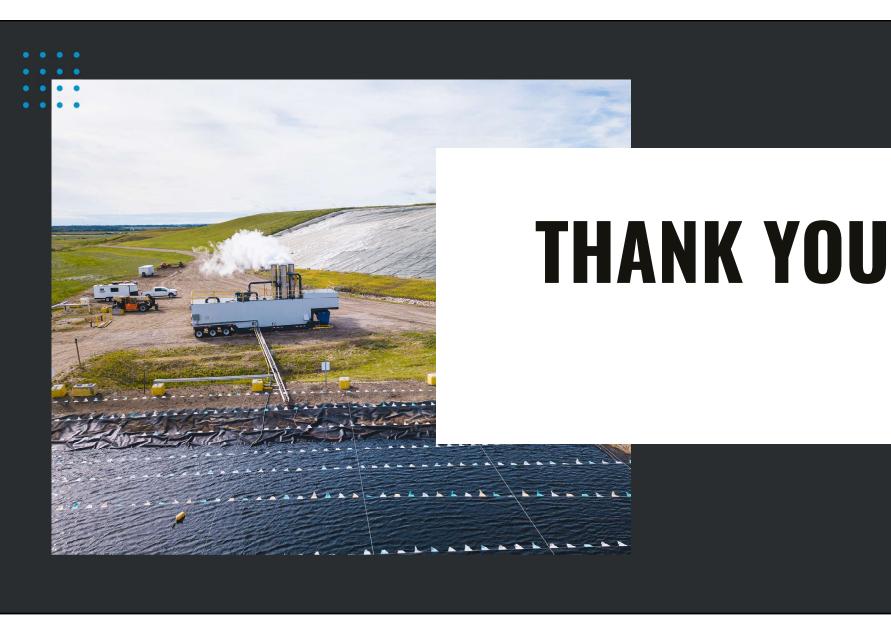
CONTENTS

- 1. Truck and Treat vs Evaporation
- 2. Evaporation types
- 3. How evaporation systems differ
- 4. Heat sources and site integration
- 5. Costs and cost considerations

COST

Three cost components:

- Operations and maintenance
- Equipment cost, capital or noncapital
- Heat source


Payback Period: Two to eight years

CONTRACTING RNG PLANTS

- Close to 90% of the revenue is in the **RNG credits**, not the gas.
- Three tips:
 - 1. Hold back enough energy to supply the evaporator.
 - Don't hold back biogas, hold back the natural gas equivalent.
 - RNG credits are still produced and shared.
 - 2. Make sure the custody transfer to the mainline natural gas system is as close to the site as possible, preferably on site.
 - 3. PUT A TIME LIMIT ON THE START.

