Human behavior outcomes of plastic and bioplastic disposal

Monica Rodriguez Morris, EIT, PhD Graduand

Research Assistant

Department of Civil and Environmental Engineering

UW-Madison

2017

2019

2021

2021 & 2022

Thesis Defense
April 2024

Decision making is tough,

making disposal choices as a consumer is difficult too.

Several factors make it even more complicated

Idealized Disposal Thought Process

Idealized Disposal Thought Process

We can use *life cycle*assessment (LCA) to
compare bioplastics
with conventional
plastics to determine if
they are in fact worth it

Life Cycle Assessment (LCA) Stages

Human behavior affects the use and end of life of a product and consequently, the potential environmental impacts of the product.

Motivation

- "Where are the people?," in the LCA context (Gutowski, 2018)
- Address the *gaps in knowledge* and data in human behavior at the use and disposal phases for single-use plastics and bioplastics.

Life Cycle Assessment Methodology

LCAs of bioplastics that include End of Life (EoL)

Study	Basis Criteria for EoL Scenarios
Potting and van der Harst, 2015	Stylized scenarios
Fieschi and Pretato, 2018	Stylized scenarios
Hottle et al., 2017	Stylized scenarios
Khoo and Tan, 2010	Undetermined
Rattana and Gheewala, 2019	Stylized scenarios
Maga et al., 2019a	Current waste mix and forecast
Maga et al., 2019b	Stylized scenarios, some with literature
Leejarkpai et al., 2016	Stylized scenarios, except one
Moretti et al., 2021	European Mix

None of the LCAs **included human behavior**, most included stylized scenarios or waste mix

Studies of Human Behavior of Disposal of Bioplastics

Study	Method	
Minelgaite and Liobikiene, 2019	Telephone Survey	
Hsieh et al., 2019	In person survey after patrons finished meal	
Brouwer et al., 2018	Material flow analysis	
Ansink et al., 2019	Field experiment	
Klein et al., 2019	Online survey	
Dilkes-Hoffman et al., 2019	Online survey	
Taufik et al., 2020	Lab-in-the-field experiment	
Herbes et al., 2020	Online and face to face interviews	
Langley et al., 2011	Mixed methods	

Most are survey work, some are experimental/observational, **all include intervention** with subjects and the only audit was conducted by participants themselves which may lead to biases.

Rodriguez Morris et al, Resources, Conservation and Recycling, 2024 Journal Impact Factor: 13.22 Noun project graphics creators used under creative commons licence: Gregor Cresnar, Jaohuarye, David, Valter Bispo, Bakunetsu Kaito, Luiz Carvalho, Ronald Vermeijs and Setitik Pixel, Chimol, Magicon,

We focused on one polymer application/product,

beverage cups for cold drinks

Plastic Cups Sorted (1,078 total)

- Polylactic Acid (PLA)-143 cups
- Polyethylene Terephthalate (PETE)-725 cups
- Polypropylene (PP)-106 cups
- Polysterene (PS)-104 cups

Rodriguez Morris et al, Resources, Conservation and Recycling, 2024 Journal Impact Factor: 13.22

Disposal Outcomes

Table 1.	"Correct"	disposal	outcomes.
----------	-----------	----------	-----------

Recycling	Landfill
Correct	Incorrect
Correct	Incorrect
Correct	Incorrect
Incorrect	Correct
	Correct Correct

Let's hypothesize:

Do you think people will be better at sorting one material versus the others?

If so, which material do you think people will be better at sorting?

Disposal Outcomes

Table 1. "Correct" disposal outcomes.

Material	Recycling	Landfill
PETE	Correct	Incorrect
PP	Correct	Incorrect
PS	Correct	Incorrect
PLA	Incorrect	Correct

Literature of behavior at point of disposal of bioplastic

This study	2023	52% PLA cup in landfill waste (correct),	Waste Audit	
		67% PETE cup in recycling (correct),		
		36% PP cup in recycling (correct),		
		40% PETE cup in recycling (correct),		
Ansink et al.	2022	90% compostable cup in plastics* bin (incorrect)	Field Experi-	
			ment	
Closed Loop	2023	28% compostable** packaging in recycling (incor-	Digital Survey	
		rect)		
Partners				
Dilkes-	2019	62% biodegradable plastic in the recycling bin	Online Survey	
Hoffman et al.		(not specified as "correct" or "incorrect" in study		
		context)		
Taufik et al	2020	89% fossil based plastic	Lab-in-the-field	
		packaging in recycling (correct),	Experiment	
		81% recyclable bio-based plastic		
		packaging in recycling (correct),		
		37% compostable bio-based plastic		
		packaging in organic waste (correct)		

^{*}Three types of bins available.

^{**} Compostable packaging included PLA and other materials labeled as compostable.

Binomial Test

P(disposing in recycling)

P(disposing in landfill)

	PETE	PP	PS	PLA
Trial 1	YES	-	-	NO
Trial 2	YES	-	NO	NO
Trial 3	YES	-	NO	NO
Trial 4	-	YES	-	-
Trial 5	-	NO	YES	-
Trial 6	NO	-	-	-
Trial 7	YES	-	-	-
Trial 8	YES	-	-	-
Total	YES	YES	YES	NO

Yes = rejected

If rejected, the probabilities are not equal, and there is a preference for one type of bin.

Rodriguez Morris et al, Resources, Conservation and Recycling, 2024 Journal Impact Factor: 13.22

Limitations

- Limited geographic and demographic sample.
- Only one type of plastic product application was considered.
- Only two types of waste bin streams were offered during the study.

Conclusion

 People seem to prefer the correct outcome for PETE, but for other materials, disposal outcomes seem to be random.

Conclusion

• People seem to prefer the correct outcome for PETE, but for other materials, disposal outcomes seem to be random.

 This could mean that there is conflicting and/or heterogeneous information, or that there is no thought-out action underlying the decision-making.

Conclusion

- People seem to prefer the correct outcome for PETE, but for other materials, disposal outcomes seem to be random.
- This could mean that there is conflicting and/or heterogeneous information, or that there is no thought-out action underlying the decision-making.
- The implications may mean that results of previous LCAs could change depending on what really ends up being recycled or in the landfill.

Acknowledgments

- + Marissa
- + Şila
- + Ramin
- + Erin
- + Fadhel
- National Science Foundation Graduate Research Fellowship Program (NSF GRFP)
- Environmental Research and Education Foundation (EREF) Fiessinger Fellowship

