Sustainability **Assessments of Waste** Management **Strategies**

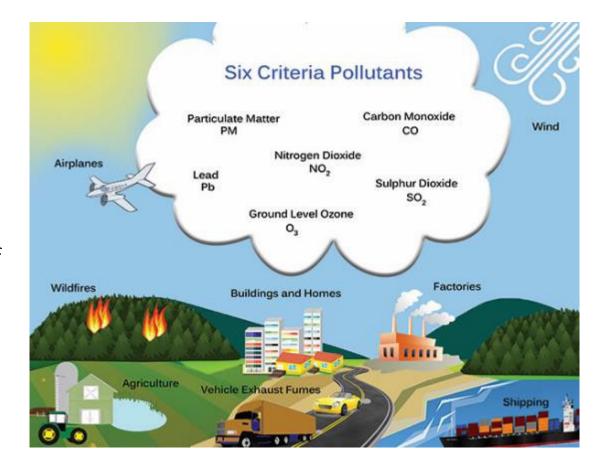
Christopher Campbell, ENV SP Christopher Gabel, P.E.

Finding the Right Balance

- People, Planet and Profit
 - Reveal hidden costs
 - Engage a diverse group of stakeholders
 - Seek to find viable and equitable solutions

Waste Management Stakeholders

Advocacy


Criteria Selection

People/Planet

Local Air Quality

- EPA established national ambient air quality standards
- Attributed to a variety of adverse health effects

Planet

- Greenhouse Gases (GHGs)
- Sources of GHGs
 - Combustion of waste
 - Anaerobic digestion of landfilled waste
 - Surface emissions of methane
 - Tailpipe emissions

People

Annual expected collisions

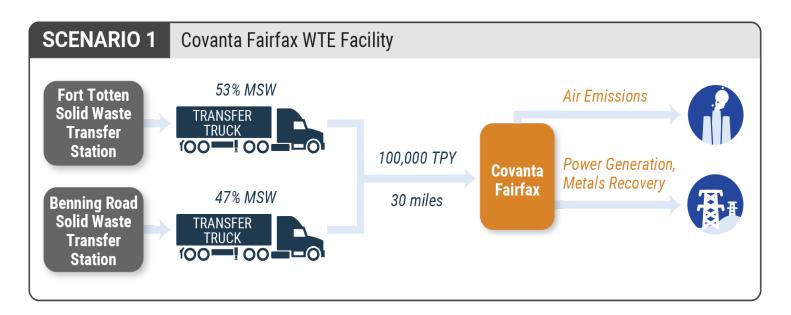
	per 100m VMT (2017)			
Collision Type	Trailer	Packer		
K - Killed	1.53	1.16		
A - Incapacitating	3.24	4.58		
B - Non-Incapacitating	12.75	18.04		
C - Possible/Other	27.41	38.77		
O - Property Damage	111.80	138.20		

Scenarios

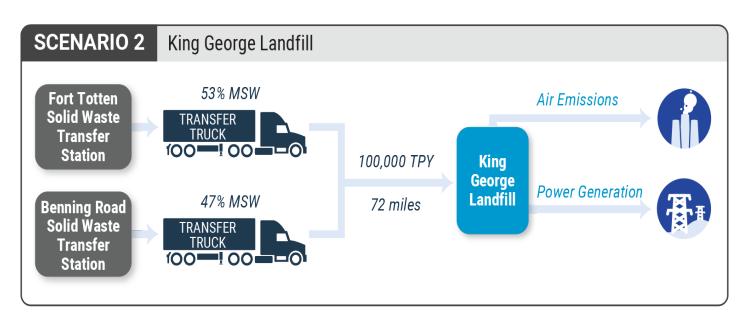
Disposal Scenarios

- Covanta Fairfax Waste-to-Energy
- King George Landfill
- King & Queen Landfill

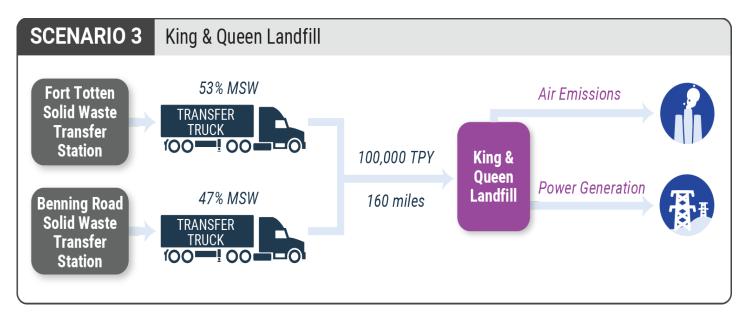
Waste-to-Energy



Landfilling


Scenario 1 – Covanta Fairfax Waste-to-Energy

- Current practice
- Municipal solid waste (MSW) is hauled 30 miles to Lorton, Virginia


Scenario 2 – King George Landfill

- King George Landfill is owned and operated by Waste Management
- Waste is hauled 72 miles to King George, Virginia

Scenario 3 – King & Queen Landfill

- King & Queen Landfill is owned and operated by Republic Services
- Waste is hauled 160 miles to Little Plymouth, Virginia

Methodology

Steps to Calculate Emissions

Data Gathering

Waste characterization

Projected Annual Tonnage

Landfill Gas Management

Community Demographics

Hauling distances and types of transport

Modeling

Emissions from waste

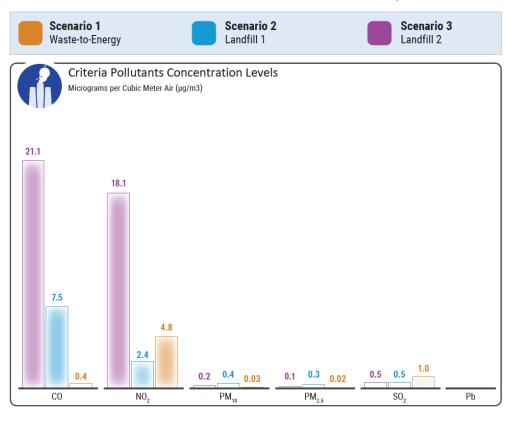
Emissions from waste:

LandGEM
Landfill Gas Emissions Model

Emissions from hauling

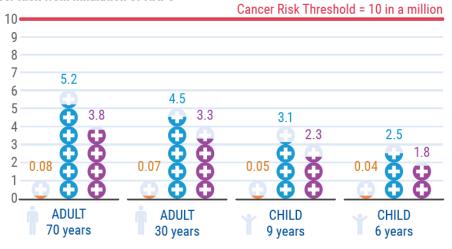
Post Processing

Biogenic CO2

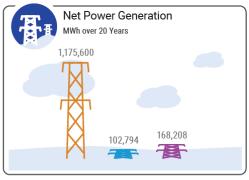

Global Warming Potentials

Case Study Results

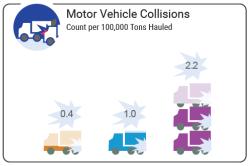
Study Results – Local Air Quality


Study Results – Human Health Risk

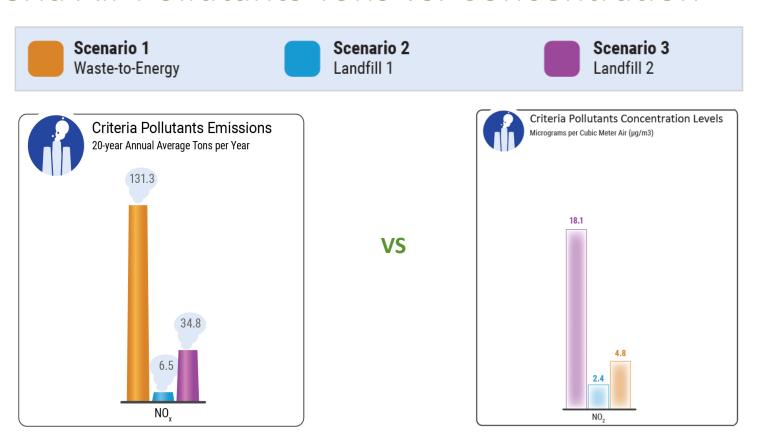
Cancer Risk from Inhalation of HAPs*


* Values are shown as the number of cancer cases per million people.

Note: Maximum cancer risks are shown for each scenario assuming residential risk at all modeled grid locations. This is a conservative assumption – see text for uncertainty discussion.

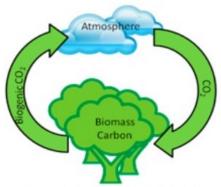

Study Results – GHG, Power, Costs & Collisions

Study Results – Environmental Justice


Subtotal Scores	15	14	18	16	13	18
1% annual change flood hazard risk	0	1	1	2	1	3
Proximity to facilities with environmental conditions	3		3		1	
Need for public assistance	0	2	2	2	3	3
Population without health insurance	2	3	3	3	1	3
Households living in poverty	0	2	3	2	2	2
Minority population	3	3	2	3	1	3
Lower median household income	1	1	2	1	3	1
EJ communities (low income & minorities)	3	2	2	3	1	3
1 2 3 Best to Worst	Facility	Hauling Route	Facility	Hauling Route	Facility	Hauling Route
Environmental Justice (EJ) Relative Rankings	Waste-to	-Energy	Land	fill 1	Land	fill 2

Key Topics

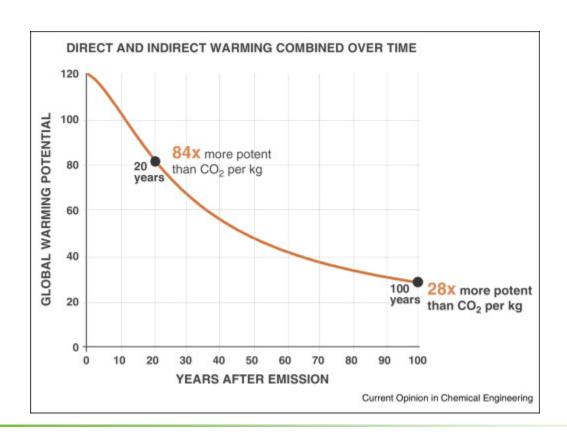
Criteria Air Pollutants Tons vs. Concentration



Exclusion of Biogenic CO2

- Biogenic CO2 is part of the carbon cycle
- Fossil fuels add carbon to the carbon cycle
- Exclusions are made for WTE and landfills biogenic emissions
- We included biogenic from tree productions due to climate change urgency

The "neutral" value biomass carbon cycle


Biogenic carbon is part of a relatively rapid natural cycle that impacts atmospheric CO₂ only if the cycle is out of balance

Carbon transfers from geological reserves

Fossil fuel combustion transfers geologic carbon into the atmosphere. It is a oneway process

Methane Global Warming Potential

Select Criteria Weights

SUSTAINABILITY CRITERIA	CRITERIA WEIGHTS	SOLID WASTE MANAGEMENT OPTION		
		CRITERIA SCORE	WEIGHTED CRITERIA SCORE	
Local Air Quality				
Greenhouse Gases				
Environmental Justice				
Hazardous Air Pollutants (Cancer Risk)				
Ecological Screening				
Vehicle Collisions				
Hauling and Disposal Costs				
	100%			
		OPTION SCORE		

Lessons Learned & Considerations

Lessons Learned

Finding the most sustainable scenario involves more than comparison of financial costs

There are no industry standards for weighting assessment criteria

Social and environmental factors require careful consideration of local and global impacts and collaboration with all stakeholders

Considerations for Future Studies

Methodologies will continue to be refined

Greening of the grid

Our understanding of sustainability is evolving

Advancements in climate change science and policy will impact future assessments

Discussion

Chris Campbell, ENV SP
Environmental Scientist
CDM Smith Inc., Austin, TX
CampbellCL@cdmsmith.com | www.cdmsmith.com