The Latest and Greatest on Surface Emissions Monitoring for Methane at Landfills

Tarek Abichou, Ph.D. P.E.

Motivations

Making more use of SEMs

- Ambient air CH4 concentration measurements are already frequently obtained and monitored in many municipal solid waste landfills.
- Can we beneficially use the quarterly **SEMs** or **Enhanced SEMs** to provide an estimate of **Landfill Total Emissions** ?

Applications: What else can we use them for?

- Determine Total Landfill Emissions Estimates
- Identify high emissions **point sources**
- Identify high emissions areas sources
- Test different remedial actions

Surface Methane Emission (SEM) monitoring is already used as part of New Source Performance Standards (NSPS), Title 40 Code of Federal Regulations Section 60.755(c) and (d). **Four (4) times per year**

• Estimate emissions reduction after remediation (Fixing the exceedances, placing more cover, adding more wells, increasing vacuum, etc...)

ppm SEM2Flux Tool

(Hicks 2017)

Landfill with Ground, Drone, and TCM Measurements

Not Statistically

Different

4,894 readings Equivalent 27 readings per hectare. Measured concentrations 21 exceeding 500 ppm.

 51,867 readings

D-SEM

51,867 readings Equivalent **285 readings per hectare**. Measured concentrations **7 exceeding 500 ppm**.

SEM2Flux Tool

The predicted methane concentration in a receptor point $i(C_{i, predicted})$ is calculated through summing up all contributions (C_{ij}) of assumed source points j(j=1,..,n).

$$C_{i,predicted} = \sum_{i=1}^{n} C_{i,j}$$

Calculating predicted concentration for all receptor points (i=1, ..., m) results in a vector of predicted concentration $(C_{predicted})$.

Search for the *best-fit source configuration* is formulated as an optimization problem that consists of residual minimization under bound constraints.

SEM2Flux Output - Results

SEM2Flux D-SEM Data Major Source Locations SEM2Flux G-SEM Data Major Source Locations

Kg/hr

Confirmation of GCS Construction activities (trenching into waste. Etc..)

Carbon Mapper Flight Confirmed No Detection 4/14/2022 -4/16/2022

	Date N. Major Sources (Kg/hr)				
Landfill C D-SEM	4/14/2022	15	657	214	
Landfill C G-SEM	4/14-4/16 2022	12	573	99	

Controlled Releases at Leon County Landfill Develop near-field dispersion equations

Controlled Releases at Leon County Landfill: Calibration of Dispersion Coefficients

Ground-data Regression (days 03/30/2023 and 03/31/2023)

Ground Truthing: Performed Tracer Correlation Method (TCM) tests to obtain "most likely estimate" of true total emissions from the landfill

Trained, Calibrated, and Verified Approach

The source emission rate is calculated for each transect using the ratio (v) of CH4 and C2H2 areas, multiplied by the tracer release rate (Q_t) and the ratio of the molecular weights of CH4 (M_{CH4}) and C2H2 (M_{C2H2}).

$$Q_{CH_{4},\nu} = (\nu)Q_{t}\frac{M_{CH_{4}}}{M_{C_{2}H_{2}}}$$

- $Q_{CH_{4},v}$: the source emission rate
- Q_t : the tracer release rate
- M_{CH_4} : molecular weights of CH4
- $M_{C_2H_2}$: molecular weights of C2H2

$$\nu = \frac{\int_{t_0}^{t_f} (y(t) - \mu_y) dy}{\int_{t_0}^{t_f} (y(t) - \mu_y) dy}$$

- $\int_{t_0}^{t_f} (x(t) \mu_x) dt$
- y(t) : CH4 respective time series (t₀ is the start time, t_f is the end time c
- μ_y : background concentrations for CH4
- x(t) : C2H2 respective time series (t_0 is the start time, t_f is the end time
- μ_x : background concentrations for C2H2

			(R-squared=0.
under the C2	H2 time series	pt	
under the CH	4 time series		
		245	
		- ²⁴ -1	
		1 Prog	L –1
			"A(1
	M		
	L'hr	The second	
	m th		
ℯℯ℆		1 1	
		12	

Landfill area measured: whole landfill

(Green et al. 2009, Mønster et al. 20

Project Output

Two versions:

Version 1: uses SEM locations as receptors, affected by emissions from a set of adjacent sources on the landfill using wind direction.(Focus on Large <u>Point Sources</u>)

Version 2: uses SEMs and develop a geospatial approach to estimate area flux (g/m²/d) for all areas under waste. (Focus on Area Emissions Flux)

Applications:

- Can we assign an emission reduction in mass/time to an improvement in LFG management practices
- Can we update the emissions **Flux** estimates once remediation are performed (Fixing the exceedances, placing more cover, adding more wells, increasing vacuum, etc...)

Article

Using Ground- and Drone-Based Surface Emission Monitoring (SEM) Data to Locate and Infer Landfill Methane Emissions

Tarek Abichou^{1,*}, Nizar Bel Hadj Ali², Sakina Amankwah¹, Roger Green³ and Eric S. Howarth⁴

SEM2Flux Tool – Point Source Locating

Assume measurement locations as *receptors*, affected by emissions from adjacent area on the landfill: *sources* of emissions.

These *sources* are considered point sources and are responsible for the concentrations measured at the receptors.

SEM2Flux Tool

Gaussian Dispersion Equation

$$C = \frac{Q}{\pi\mu\sigma_{y}\sigma_{z}} \exp\left[-\frac{1}{2}\frac{y^{2}}{\sigma_{y}^{2}}\right]$$

The predicted methane concentration in a receptor point $i(C_{i, \text{ oredicted}})$ is calculated through summing up all contributions (C_{ii}) of assumed source points j (j=1,..,n).

$$C_{i,predicted} = \sum_{i=1}^{n} C_{i,j}$$

Calculating predicted concentration for all reception points (i=1, ..., m) results in a vector of predicted concentration ($C_{predicted}$).

Search for the **best-fit source configuration** is formulated as an optimization problem that consists of residual minimization under bound constraints.

Focus on Localization

SEM2Flux Source Localization (Timeline)

Total Landfill Emissions Estimation

SEM2Flux Approach 2: Geospatial Developed Geospatial Approach to Transform SEM Data to Local Emissions Flux

Log Transformation

SEM Data

Journal of the Air & Waste Management Association

Taylor & Francis

Estimation of total landfill surface methane emissions using geospatial approach combined with measured surface ambient air methane concentrations

CH4 TIUX (g/m2/day) + IDW, p=2

Using Inverse Distance Weighing (IDW) to

SEM2Flux Approach 2: Geospatial Actionable Output of Approach

CH4 flux (g/m2/day) - IDW, p=2

Emission rate kg/hr	Low flux contribution kg/hr	Medium flux contribution kg/hr	High flux contribution kg/hr
406	354.8	48.9	2.5

Contributions To Total Emissions

Low flux contribution kg/hr

Medium flux contribution kg/hr

High flux contribution kg/hr

Landfill A: Assessment of Possible Remedial Approach

Landfill B: Assessment of Possible Remedial Approach

60%

50%

Percent Reduction

10%

0%

Using a Digital Twin Approach for Designing and Evaluating Landfill Gas Emissions Modeling and Monitoring

Assessing the Uncertainties in Integrated Mass Enhancement (IME) in Landfill Methane Emissions Applications

UNIVERSITY OF CENTRAL FLORIDA

Landfill Digital Twin: Virtual Controlled Release Experimental Site

<u>Create</u> a prototype digital twin of a selected Florida landfill and <u>Demonstrate</u> its utilities in designing and evaluating landfill methane emissions modeling and monitoring approaches

Digital twin is the digital "clone" of a real-world system

- Virtually represent real-time operating status
- Simulate physical, operational, and environmental characteristics

Digital twin enables **repeated experiments** not feasible in real world, such as iteratively designing, developing, and validating methane monitoring and modeling approaches Digital twin can also be used to **simulate other**

- aspects of landfill such as scenario planning and
- operation forecasting
- Real-world sensor data can also be integrated

Design and/or evaluate CH₄ monitoring/modeling methods (SEM, Continuous Monitoring, Drones, Downwind, Aerial, techniques)

Goal: Demo utility of landfill digital twin in methane emissions modeling and monitoring

Created Prototype Digital Twins

- Goal: Generating high resolution 3D CH₄ data & visualization in space and time
 - Collected high resolution terrain data for Leon County landfill
 - Obtained high resolution terrain data from a Georgia landfill
 - Created landfill digital representation in Unreal Engine
 - Simulated 3D CH₄ field using AERMOD model
- Collected wind data at 10 m for 3-4 months

AERMOD Modeling and Column Concentration Integration

• Performed many AERMOD for 2168 hours, about 90 days: Generated 2168 scenes

Sources of Uncertainties in IME Emissions Rate

Author	Ueff
(Cusworth et al., 2020)	1.1 log U_{10} + 0.6
(Roger et al., 2024)	$0.34 \mathrm{~U_{10}} + 0.44$
(He et al., 2024)	$0.37 \mathrm{~U_{10}} + 0.64$
(Ayasse et al., 2019)	U_{10}
(Varon et al., 2019)	$\log U_{10} + 0.5$
(Guanter et al., 2021)	$0.34 \mathrm{~U_{10}} + 0.44$
(Ayasse et al., 2023)	$1.1 \log U_{10} + 0.6$
Sánchez-García et al., 2021)	$0.12 \ \mathrm{U_{10}} + 0.38$
(Thorpe et al., 2023)	U ₁₀
Irakulis-Loitxate et al., 2021)	$0.34 \mathrm{~U_{10}} + 0.44$
(Maasakkers et al., 2022)	$0.34~{\rm U_{10}}+0.66$ for $0.34~{\rm U_{10}}+0.42$
(Foote et al., 2021)	U_{10}
(Chulakadabba et al., 2023)	$\log U_{10} + 0.6$
(Pei et al., 2023)	$0.34 \mathrm{~U_{10}} + 0.44$
(Varon et al., 2020)	$1.14~{\rm U_{10}}, 1.24~{\rm U10}, 1.16~{\rm U_{10}}$
(Ehret et al., 2022)	$0.9 \log U_{10} + 0.6$
(Gorroño et al., 2023)	$0.23 U_{10} + 0.74$
(Marjani et al., 2024)	$0.34 \mathrm{~U_{10}} + 0.44$
(Schuit et al., 2023)	0.59 U ₁₀
(Bruno et al., 2024)	$0.23 \mathrm{~U_{10}} + 0.7$
(Pang et al., 2023)	$0.55 \log U_{10} + 0.62$

Emission Rate Q, using the IME Method

Flat Terrain

0% Noise

1% Noise

3% Noise

5% Noise

Emission Rate Q, using the IME Method 500 kg/h Emission Rate across Flat and Complex Terrain

(Complex Terrain)

Sources of Uncertainties

Other Sources of Uncertainties

Cross-comparison of mean wind speeds from on-site measurements, nearby TLH airport, HRRR and GEOS models.

$$U_{\rm eff} = 1.1 \log U_{10} + 0.6$$

Large difference between on site and database global wind data models especially at low wind speed

Key Takeaway on IME Approach

- Current IME algorithm may have significant uncertainties
 - U_{eff} wind formula may not account for all atmospheric conditions and the disproportionate change of mass enhancement and plume scale
 - Terrain feature could impact IME accuracy
 - The use of wind data from weather model may introduce more uncertainties
 - $\sim 10 \text{ x over-estimation possible}$
- Location specific calibration w/ local wind data may be necessary

 ✓ We need to develop site-specific or conditions-specific U_{eff} Equations each satellite observation?
 ✓ We need more controlled releases under diverse atmospheric condition for IME calibration ?

Deliverables

Delangel Jorge M. Student (Graduated 2023) Sakina Amankwah Student Graduated (12/2024) Looking for a Job!!!

Questions?

Tarek Abichou

Professor

Civil & Environmental Engineering FAMU-FSU College of Engineering Phone: (850)410-6661 E-mail: <u>abichou@eng.famu.fsu.edu</u>

Contact Information

